BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 30771986)

  • 1. Developing a julolidine-fluorescein-based hybrid as a highly sensitive fluorescent probe for sensing and bioimaging cysteine in living cells.
    Ji Y; Dai F; Zhou B
    Talanta; 2019 May; 197():631-637. PubMed ID: 30771986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescein-Based Chromogenic and Ratiometric Fluorescence Probe for Highly Selective Detection of Cysteine and Its Application in Bioimaging.
    Fu ZH; Han X; Shao Y; Fang J; Zhang ZH; Wang YW; Peng Y
    Anal Chem; 2017 Feb; 89(3):1937-1944. PubMed ID: 28208244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescein aldehyde with disulfide functionality as a fluorescence turn-on probe for cysteine and homocysteine in HEPES buffer.
    Lee H; Kim HJ
    Org Biomol Chem; 2013 Aug; 11(30):5012-6. PubMed ID: 23797423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ratiometric fluorescent probe based on ESIPT for the highly selective detection of cysteine in living cells.
    Li X; Ma H; Qian J; Cao T; Teng Z; Iqbal K; Qin W; Guo H
    Talanta; 2019 Mar; 194():717-722. PubMed ID: 30609596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dual-site fluorescent probe for direct and highly selective detection of cysteine and its application in living cells.
    Wang P; Wang Q; Huang J; Li N; Gu Y
    Biosens Bioelectron; 2017 Jun; 92():583-588. PubMed ID: 27829568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Multi-signal Fluorescent Probe with Multiple Binding Sites for Simultaneous Sensing of Cysteine, Homocysteine, and Glutathione.
    Yin GX; Niu TT; Gan YB; Yu T; Yin P; Chen HM; Zhang YY; Li HT; Yao SZ
    Angew Chem Int Ed Engl; 2018 Apr; 57(18):4991-4994. PubMed ID: 29512245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new fluorescence turn-on probe for biothiols based on photoinduced electron transfer and its application in living cells.
    Wang J; Zhou C; Zhang J; Zhu X; Liu X; Wang Q; Zhang H
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Sep; 166():31-37. PubMed ID: 27203232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fluorescence turn-on probe for cysteine and homocysteine based on thiol-triggered benzothiazolidine ring formation.
    Liu SR; Chang CY; Wu SP
    Anal Chim Acta; 2014 Nov; 849():64-9. PubMed ID: 25300219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel probe for colorimetric and near-infrared fluorescence detection of cysteine in aqueous solution, cells and zebrafish.
    Dai Y; Xue T; Zhang X; Misal S; Ji H; Qi Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 216():365-374. PubMed ID: 30921659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quinoline-derived fluorescent probes for the discrimination of Cys from Hcys/GSH and bioimaging in living cells.
    Wu Q; Mao M; Liang W; Stadler FJ
    Talanta; 2018 Aug; 186():110-118. PubMed ID: 29784337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid and ratiometric fluorescent detection of cysteine with high selectivity and sensitivity by a simple and readily available probe.
    Liu Y; Yu D; Ding S; Xiao Q; Guo J; Feng G
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17543-50. PubMed ID: 25253409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting Cysteine in Bioimaging with a Near-Infrared Probe Based on a Novel Fluorescence Quenching Mechanism.
    Tao Y; Ji X; Zhang J; Jin Y; Wang N; Si Y; Zhao W
    Chembiochem; 2020 Nov; 21(21):3131-3136. PubMed ID: 32558103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A series of BODIPY-based probes for the detection of cysteine and homocysteine in living cells.
    Wang N; Chen M; Gao J; Ji X; He J; Zhang J; Zhao W
    Talanta; 2019 Apr; 195():281-289. PubMed ID: 30625544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Hybrid Coumarin-Semifluorescein-Based Fluorescent Probe for the Detection of Cysteine.
    Jia X; Niu C; He Y; Sun Y; Liu H
    J Fluoresc; 2018 Sep; 28(5):1059-1064. PubMed ID: 30066221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel near-infrared fluorescent probe for highly selective detection of cysteine and its application in living cells.
    Zhang W; Liu J; Yu Y; Han Q; Cheng T; Shen J; Wang B; Jiang Y
    Talanta; 2018 Aug; 185():477-482. PubMed ID: 29759230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple "turn-on" fluorescent probe capable of recognition cysteine with rapid response and high sensing in living cells and zebrafish.
    Cao X; Lu H; Wei Y; Jin L; Zhang Q; Liu B
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jul; 275():121167. PubMed ID: 35316627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A near-infrared ratiometric fluorescent probe for cysteine detection over glutathione indicating mitochondrial oxidative stress in vivo.
    Yin K; Yu F; Zhang W; Chen L
    Biosens Bioelectron; 2015 Dec; 74():156-64. PubMed ID: 26141101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Native chemical ligation combined with spirocyclization of benzopyrylium dyes for the ratiometric and selective fluorescence detection of cysteine and homocysteine.
    Lv H; Yang XF; Zhong Y; Guo Y; Li Z; Li H
    Anal Chem; 2014 Feb; 86(3):1800-7. PubMed ID: 24410246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-infrared and naked-eye fluorescence probe for direct and highly selective detection of cysteine and its application in living cells.
    Zhang J; Wang J; Liu J; Ning L; Zhu X; Yu B; Liu X; Yao X; Zhang H
    Anal Chem; 2015; 87(9):4856-63. PubMed ID: 25875053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An enhanced fluorescence sensor for specific detection Cys over Hcy/GSH and its bioimaging in living cells.
    Chen T; Pei X; Yue Y; Huo F; Yin C
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Feb; 209():223-227. PubMed ID: 30412847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.