BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 30772063)

  • 1. Stable force control and contact transition of a single link flexible robot using a fractional-order controller.
    Feliu-Talegon D; Feliu-Batlle V; Tejado I; Vinagre BM; HosseinNia SH
    ISA Trans; 2019 Jun; 89():139-157. PubMed ID: 30772063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Robust Balance-Control Framework for the Terrain-Blind Bipedal Walking of a Humanoid Robot on Unknown and Uneven Terrain.
    Joe HM; Oh JH
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable Physical Human-Robot Interaction Using Fractional Order Admittance Control.
    Aydin Y; Tokatli O; Patoglu V; Basdogan C
    IEEE Trans Haptics; 2018 Mar; ():. PubMed ID: 29994591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing the damping of oscillatory systems with an arbitrary number of time varying frequencies using fractional-order collocated feedback.
    Feliu-Batlle V; Feliu-Talegon D; San-Millan A
    J Adv Res; 2020 Sep; 25():125-136. PubMed ID: 32922980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved force-based impedance control method for the HDU of legged robots.
    Ba K; Yu B; Gao Z; Zhu Q; Ma G; Kong X
    ISA Trans; 2019 Jan; 84():187-205. PubMed ID: 30309724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot.
    Or J
    Neural Netw; 2010 Apr; 23(3):452-60. PubMed ID: 20031370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stiffness Control of Surgical Continuum Manipulators.
    Mahvash M; Dupont PE
    IEEE Trans Robot; 2011 Apr; 27(2):. PubMed ID: 24273466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An exoskeletal robot for human elbow motion support-sensor fusion, adaptation, and control.
    Kiguchi K; Kariya S; Watanabe K; Izumi K; Fukuda T
    IEEE Trans Syst Man Cybern B Cybern; 2001; 31(3):353-61. PubMed ID: 18244798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling and tracking control of dielectric elastomer actuators based on fractional calculus.
    Wu J; Xu Z; Zhang Y; Su CY; Wang Y
    ISA Trans; 2023 Jul; 138():687-695. PubMed ID: 36792481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Configuration-Dependent Optimal Impedance Control of an Upper Extremity Stroke Rehabilitation Manipulandum.
    Ghannadi B; Sharif Razavian R; McPhee J
    Front Robot AI; 2018; 5():124. PubMed ID: 33501003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research on Human-Robot Collaboration Method for Parallel Robots Oriented to Segment Docking.
    Sun D; Wang J; Xu Z; Bao J; Lu H
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assisting Operators in Heavy Industrial Tasks: On the Design of an Optimized Cooperative Impedance Fuzzy-Controller With Embedded Safety Rules.
    Roveda L; Haghshenas S; Caimmi M; Pedrocchi N; Molinari Tosatti L
    Front Robot AI; 2019; 6():75. PubMed ID: 33501090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An adaptive link position tracking controller for rigid-link flexible-joint robots without velocity measurements.
    Lim SY; Dawson DM; Hu J; de Queiroz MS
    IEEE Trans Syst Man Cybern B Cybern; 1997; 27(3):412-27. PubMed ID: 18255881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction force and motion estimators facilitating impedance control of the upper limb rehabilitation robot.
    Mancisidor A; Zubizarreta A; Cabanes I; Bengoa P; Jung JH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():561-566. PubMed ID: 28813879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrete-Time Impedance Control for Dynamic Response Regulation of Parallel Soft Robots.
    Khan AH; Li S
    Biomimetics (Basel); 2024 May; 9(6):. PubMed ID: 38921203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive output feedback control of flexible-joint robots using neural networks: dynamic surface design approach.
    Yoo SJ; Park JB; Choi YH
    IEEE Trans Neural Netw; 2008 Oct; 19(10):1712-26. PubMed ID: 18842476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on Residual Vibration Suppress of a 3-DOF Flexible Parallel Robot Mechanism.
    Zhang Q; Lu Q; Zhang X; Wu J
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Navigation Path Based Universal Mobile Manipulator Integrated Controller (NUMMIC).
    Kim T; Kim M; Yang S; Kim D
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Multitasking-Oriented Robot Arm Motion Planning Scheme Based on Deep Reinforcement Learning and Twin Synchro-Control.
    Liu C; Gao J; Bi Y; Shi X; Tian D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractional order PID for tracking control of a parallel robotic manipulator type delta.
    Angel L; Viola J
    ISA Trans; 2018 Aug; 79():172-188. PubMed ID: 29793737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.