These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
345 related articles for article (PubMed ID: 30772075)
1. A novel diagnostic information based framework for super-resolution of retinal fundus images. Das V; Dandapat S; Bora PK Comput Med Imaging Graph; 2019 Mar; 72():22-33. PubMed ID: 30772075 [TBL] [Abstract][Full Text] [Related]
2. Automatic Detection of Hard Exudates in Color Retinal Images Using Dynamic Threshold and SVM Classification: Algorithm Development and Evaluation. Long S; Huang X; Chen Z; Pardhan S; Zheng D Biomed Res Int; 2019; 2019():3926930. PubMed ID: 30809539 [TBL] [Abstract][Full Text] [Related]
3. Unsupervised arterial spin labeling image superresolution via multiscale generative adversarial network. Cui J; Gong K; Han P; Liu H; Li Q Med Phys; 2022 Apr; 49(4):2373-2385. PubMed ID: 35048390 [TBL] [Abstract][Full Text] [Related]
4. MRI super-resolution reconstruction for MRI-guided adaptive radiotherapy using cascaded deep learning: In the presence of limited training data and unknown translation model. Chun J; Zhang H; Gach HM; Olberg S; Mazur T; Green O; Kim T; Kim H; Kim JS; Mutic S; Park JC Med Phys; 2019 Sep; 46(9):4148-4164. PubMed ID: 31309585 [TBL] [Abstract][Full Text] [Related]
5. Diagnosis of retinal health in digital fundus images using continuous wavelet transform (CWT) and entropies. Koh JEW; Acharya UR; Hagiwara Y; Raghavendra U; Tan JH; Sree SV; Bhandary SV; Rao AK; Sivaprasad S; Chua KC; Laude A; Tong L Comput Biol Med; 2017 May; 84():89-97. PubMed ID: 28351716 [TBL] [Abstract][Full Text] [Related]
6. A diagnostic information based framework for super-resolution and quality assessment of retinal OCT images. Das V; Dandapat S; Bora PK Comput Med Imaging Graph; 2021 Dec; 94():101997. PubMed ID: 34678643 [TBL] [Abstract][Full Text] [Related]
7. Fast single image super-resolution using estimated low-frequency k-space data in MRI. Luo J; Mou Z; Qin B; Li W; Yang F; Robini M; Zhu Y Magn Reson Imaging; 2017 Jul; 40():1-11. PubMed ID: 28366758 [TBL] [Abstract][Full Text] [Related]
8. A novel image recuperation approach for diagnosing and ranking retinopathy disease level using diabetic fundus image. Krishnamoorthy S; Alli P PLoS One; 2015; 10(5):e0125542. PubMed ID: 25974230 [TBL] [Abstract][Full Text] [Related]
9. Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques. Akyol K; Şen B; Bayır Ş Comput Math Methods Med; 2016; 2016():6814791. PubMed ID: 27110272 [TBL] [Abstract][Full Text] [Related]
10. An Automated System for the Detection and Classification of Retinal Changes Due to Red Lesions in Longitudinal Fundus Images. Adal KM; van Etten PG; Martinez JP; Rouwen KW; Vermeer KA; van Vliet LJ IEEE Trans Biomed Eng; 2018 Jun; 65(6):1382-1390. PubMed ID: 28922110 [TBL] [Abstract][Full Text] [Related]
11. Analysis of hybrid statistical textural and intensity features to discriminate retinal abnormalities through classifiers. Balasubramanian K; Ananthamoorthy NP Proc Inst Mech Eng H; 2019 May; 233(5):506-514. PubMed ID: 30894077 [TBL] [Abstract][Full Text] [Related]
12. An ensemble classification of exudates in color fundus images using an evolutionary algorithm based optimal features selection. Ullah H; Saba T; Islam N; Abbas N; Rehman A; Mehmood Z; Anjum A Microsc Res Tech; 2019 Apr; 82(4):361-372. PubMed ID: 30677193 [TBL] [Abstract][Full Text] [Related]
13. Deep Ensemble Learning Based Objective Grading of Macular Edema by Extracting Clinically Significant Findings from Fused Retinal Imaging Modalities. Hassan B; Hassan T; Li B; Ahmed R; Hassan O Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284442 [TBL] [Abstract][Full Text] [Related]
14. Network-based features for retinal fundus vessel structure analysis. Amil P; Reyes-Manzano CF; Guzmán-Vargas L; Sendiña-Nadal I; Masoller C PLoS One; 2019; 14(7):e0220132. PubMed ID: 31344132 [TBL] [Abstract][Full Text] [Related]
16. Comparison of super-resolution algorithms applied to retinal images. Thapa D; Raahemifar K; Bobier WR; Lakshminarayanan V J Biomed Opt; 2014 May; 19(5):056002. PubMed ID: 24788371 [TBL] [Abstract][Full Text] [Related]
17. A novel hybrid generative adversarial network for CT and MRI super-resolution reconstruction. Xiao Y; Chen C; Wang L; Yu J; Fu X; Zou Y; Lin Z; Wang K Phys Med Biol; 2023 Jun; 68(13):. PubMed ID: 37285848 [No Abstract] [Full Text] [Related]
18. Microaneurysms detection in color fundus images using machine learning based on directional local contrast. Long S; Chen J; Hu A; Liu H; Chen Z; Zheng D Biomed Eng Online; 2020 Apr; 19(1):21. PubMed ID: 32295576 [TBL] [Abstract][Full Text] [Related]
19. Automated Quality Assessment of Colour Fundus Images for Diabetic Retinopathy Screening in Telemedicine. Saha SK; Fernando B; Cuadros J; Xiao D; Kanagasingam Y J Digit Imaging; 2018 Dec; 31(6):869-878. PubMed ID: 29704086 [TBL] [Abstract][Full Text] [Related]
20. Decision support system for diabetic retinopathy using discrete wavelet transform. Noronha K; Acharya UR; Nayak KP; Kamath S; Bhandary SV Proc Inst Mech Eng H; 2013 Mar; 227(3):251-61. PubMed ID: 23662341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]