BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 30772373)

  • 1. Relaxin and fibrosis: Emerging targets, challenges, and future directions.
    Kanai AJ; Konieczko EM; Bennett RG; Samuel CS; Royce SG
    Mol Cell Endocrinol; 2019 May; 487():66-74. PubMed ID: 30772373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relaxin as an anti-fibrotic treatment: Perspectives, challenges and future directions.
    Samuel CS; Bennett RG
    Biochem Pharmacol; 2022 Mar; 197():114884. PubMed ID: 34968489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human Recombinant Relaxin (Serelaxin) as Anti-fibrotic Agent: Pharmacology, Limitations and Actual Perspectives.
    Sassoli C; Nistri S; Chellini F; Bani D
    Curr Mol Med; 2022; 22(3):196-208. PubMed ID: 33687895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of relaxin on extracellular matrix remodeling in health and fibrotic disease.
    Samuel CS; Lekgabe ED; Mookerjee I
    Adv Exp Med Biol; 2007; 612():88-103. PubMed ID: 18161483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relaxin in hepatic fibrosis: What is known and where to head?
    Ezhilarasan D
    Biochimie; 2021 Aug; 187():144-151. PubMed ID: 34102254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serelaxin alleviates cardiac fibrosis through inhibiting endothelial-to-mesenchymal transition via RXFP1.
    Wilhelmi T; Xu X; Tan X; Hulshoff MS; Maamari S; Sossalla S; Zeisberg M; Zeisberg EM
    Theranostics; 2020; 10(9):3905-3924. PubMed ID: 32226528
    [No Abstract]   [Full Text] [Related]  

  • 7. Relaxin and extracellular matrix remodeling: Mechanisms and signaling pathways.
    Ng HH; Shen M; Samuel CS; Schlossmann J; Bennett RG
    Mol Cell Endocrinol; 2019 May; 487():59-65. PubMed ID: 30660699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AT1R-AT2R-RXFP1 Functional Crosstalk in Myofibroblasts: Impact on the Therapeutic Targeting of Renal and Cardiac Fibrosis.
    Chow BSM; Kocan M; Shen M; Wang Y; Han L; Chew JY; Wang C; Bosnyak S; Mirabito-Colafella KM; Barsha G; Wigg B; Johnstone EKM; Hossain MA; Pfleger KDG; Denton KM; Widdop RE; Summers RJ; Bathgate RAD; Hewitson TD; Samuel CS
    J Am Soc Nephrol; 2019 Nov; 30(11):2191-2207. PubMed ID: 31511361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relaxin as a treatment for musculoskeletal fibrosis: What we know and future directions.
    Nourmahnad A; Javad Shariyate M; Khak M; Grinstaff MW; Nazarian A; Rodriguez EK
    Biochem Pharmacol; 2024 Jul; 225():116273. PubMed ID: 38729446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered expression of RXFP1 receptor contributes to the inefficacy of relaxin-based anti-fibrotic treatments in systemic sclerosis.
    Corallo C; Pinto AM; Renieri A; Cheleschi S; Fioravanti A; Cutolo M; Soldano S; Nuti R; Giordano N
    Clin Exp Rheumatol; 2019; 37 Suppl 119(4):69-75. PubMed ID: 31365333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of interactions at the extracellular loops of the relaxin family peptide receptor 1 (RXFP1).
    Diepenhorst NA; Petrie EJ; Chen CZ; Wang A; Hossain MA; Bathgate RA; Gooley PR
    J Biol Chem; 2014 Dec; 289(50):34938-52. PubMed ID: 25352603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding relaxin signalling at the cellular level.
    Valkovic AL; Bathgate RA; Samuel CS; Kocan M
    Mol Cell Endocrinol; 2019 May; 487():24-33. PubMed ID: 30592984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A single-chain derivative of the relaxin hormone is a functionally selective agonist of the G protein-coupled receptor, RXFP1.
    Hossain MA; Kocan M; Yao ST; Royce SG; Nair VB; Siwek C; Patil NA; Harrison IP; Rosengren KJ; Selemidis S; Summers RJ; Wade JD; Bathgate RAD; Samuel CS
    Chem Sci; 2016 Jun; 7(6):3805-3819. PubMed ID: 30155023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relaxin requires the angiotensin II type 2 receptor to abrogate renal interstitial fibrosis.
    Chow BS; Kocan M; Bosnyak S; Sarwar M; Wigg B; Jones ES; Widdop RE; Summers RJ; Bathgate RA; Hewitson TD; Samuel CS
    Kidney Int; 2014 Jul; 86(1):75-85. PubMed ID: 24429402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. H3 relaxin demonstrates antifibrotic properties via the RXFP1 receptor.
    Hossain MA; Man BC; Zhao C; Xu Q; Du XJ; Wade JD; Samuel CS
    Biochemistry; 2011 Mar; 50(8):1368-75. PubMed ID: 21229994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The anti-fibrotic actions of relaxin are mediated through AT
    Wang C; Pinar AA; Widdop RE; Hossain MA; Bathgate RAD; Denton KM; Kemp-Harper BK; Samuel CS
    FASEB J; 2020 Jun; 34(6):8217-8233. PubMed ID: 32297670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relaxin family peptide receptor 1 (RXFP1): An emerging player in human health and disease.
    Chen TY; Li X; Hung CH; Bahudhanapati H; Tan J; Kass DJ; Zhang Y
    Mol Genet Genomic Med; 2020 Apr; 8(4):e1194. PubMed ID: 32100955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging roles for the relaxin/RXFP1 system in cancer therapy.
    Thanasupawat T; Glogowska A; Nivedita-Krishnan S; Wilson B; Klonisch T; Hombach-Klonisch S
    Mol Cell Endocrinol; 2019 May; 487():85-93. PubMed ID: 30763603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-fibrotic actions of relaxin.
    Samuel CS; Royce SG; Hewitson TD; Denton KM; Cooney TE; Bennett RG
    Br J Pharmacol; 2017 May; 174(10):962-976. PubMed ID: 27250825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relaxin: antifibrotic properties and effects in models of disease.
    Samuel CS
    Clin Med Res; 2005 Nov; 3(4):241-9. PubMed ID: 16303890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.