BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 30772518)

  • 1. In vitro osteogenic differentiation potential of the human induced pluripotent stem cells augments when grown on Graphene oxide-modified nanofibers.
    Saburi E; Islami M; Hosseinzadeh S; Moghadam AS; Mansour RN; Azadian E; Joneidi Z; Nikpoor AR; Ghadiani MH; Khodaii Z; Ardeshirylajimi A
    Gene; 2019 May; 696():72-79. PubMed ID: 30772518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of osteogenic differentiation potential of induced pluripotent stem cells on 2D and 3D polyvinylidene fluoride scaffolds.
    Mirzaei A; Moghadam AS; Abazari MF; Nejati F; Torabinejad S; Kaabi M; Enderami SE; Ardeshirylajimi A; Darvish M; Soleimanifar F; Saburi E
    J Cell Physiol; 2019 Aug; 234(10):17854-17862. PubMed ID: 30851069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporated-bFGF polycaprolactone/polyvinylidene fluoride nanocomposite scaffold promotes human induced pluripotent stem cells osteogenic differentiation.
    Abazari MF; Soleimanifar F; Enderami SE; Nematzadeh M; Nasiri N; Nejati F; Saburi E; Khodashenas S; Darbasizadeh B; Khani MM; Ghoraeian P
    J Cell Biochem; 2019 Oct; 120(10):16750-16759. PubMed ID: 31081968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyvinyl alcohol modified polyvinylidene fluoride-graphene oxide scaffold promotes osteogenic differentiation potential of human induced pluripotent stem cells.
    Azadian E; Arjmand B; Ardeshirylajimi A; Hosseinzadeh S; Omidi M; Khojasteh A
    J Cell Biochem; 2020 Jun; 121(5-6):3185-3196. PubMed ID: 31886565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved osteogenic differentiation of human induced pluripotent stem cells cultured on polyvinylidene fluoride/collagen/platelet-rich plasma composite nanofibers.
    Abazari MF; Soleimanifar F; Amini Faskhodi M; Mansour RN; Amini Mahabadi J; Sadeghi S; Hassannia H; Saburi E; Enderami SE; Khani MM; Zare Karizi S
    J Cell Physiol; 2020 Feb; 235(2):1155-1164. PubMed ID: 31250436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) improved osteogenic differentiation of the human induced pluripotent stem cells while considered as an artificial extracellular matrix.
    Hosseini FS; Soleimanifar F; Aidun A; Enderami SE; Saburi E; Marzouni HZ; Khani MM; Khojasteh A; Ardeshirylajimi A
    J Cell Physiol; 2019 Jul; 234(7):11537-11544. PubMed ID: 30478907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro-RNA-incorporated electrospun nanofibers improve osteogenic differentiation of human-induced pluripotent stem cells.
    Tahmasebi A; Enderami SE; Saburi E; Islami M; Yaslianifard S; Mahabadi JA; Ardeshirylajimi A; Soleimanifar F; Moghadam AS
    J Biomed Mater Res A; 2020 Feb; 108(2):377-386. PubMed ID: 31654461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats.
    Luo Y; Shen H; Fang Y; Cao Y; Huang J; Zhang M; Dai J; Shi X; Zhang Z
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6331-9. PubMed ID: 25741576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic scaffold containing PVDF nanofibers with sustained TGF-β release in combination with AT-MSCs for bladder tissue engineering.
    Ardeshirylajimi A; Ghaderian SM; Omrani MD; Moradi SL
    Gene; 2018 Nov; 676():195-201. PubMed ID: 30030200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adipose-derived stem cells-conditioned medium improved osteogenic differentiation of induced pluripotent stem cells when grown on polycaprolactone nanofibers.
    Soleimanifar F; Hosseini FS; Atabati H; Behdari A; Kabiri L; Enderami SE; Khani MM; Ardeshirylajimi A; Saburi E
    J Cell Physiol; 2019 Jul; 234(7):10315-10323. PubMed ID: 30378123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering.
    Zhang S; Prabhakaran MP; Qin X; Ramakrishna S
    J Biomater Appl; 2015 May; 29(10):1394-406. PubMed ID: 25592285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide.
    Shao W; He J; Sang F; Wang Q; Chen L; Cui S; Ding B
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():823-34. PubMed ID: 26952489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced reconstruction of rat calvarial defects achieved by plasma-treated electrospun scaffolds and induced pluripotent stem cells.
    Ardeshirylajimi A; Dinarvand P; Seyedjafari E; Langroudi L; Adegani FJ; Soleimani M
    Cell Tissue Res; 2013 Dec; 354(3):849-60. PubMed ID: 23955642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved biological behaviours and osteoinductive capacity of the gelatin nanofibers while composites with GO/MgO.
    Mahdavi MR; Kehtari M; Mellati A; Mansour RN; Mahdavi M; Mahdavi M; Enderami SE
    Cell Biochem Funct; 2022 Mar; 40(2):189-198. PubMed ID: 35118692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precipitation of nanohydroxyapatite on PLLA/PBLG/Collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage.
    Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Ramakrishna S
    Biomaterials; 2012 Jan; 33(3):846-55. PubMed ID: 22048006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aloe Vera-Derived Gel-Blended PHBV Nanofibrous Scaffold for Bone Tissue Engineering.
    Tahmasebi A; Shapouri Moghadam A; Enderami SE; Islami M; Kaabi M; Saburi E; Daei Farshchi A; Soleimanifar F; Mansouri V
    ASAIO J; 2020 Aug; 66(8):966-973. PubMed ID: 32740360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic effects of polyaniline and pulsed electromagnetic field to stem cells osteogenic differentiation on polyvinylidene fluoride scaffold.
    Mirzaei A; Saburi E; Enderami SE; Barati Bagherabad M; Enderami SE; Chokami M; Shapouri Moghadam A; Salarinia R; Ardeshirylajimi A; Mansouri V; Soleimanifar F
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):3058-3066. PubMed ID: 31339375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergism of Electrospun Nanofibers and Pulsed Electromagnetic Field on Osteogenic Differentiation of Induced Pluripotent Stem Cells.
    Ardeshirylajimi A; Khojasteh A
    ASAIO J; 2018; 64(2):253-260. PubMed ID: 28746081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural changes in PVDF fibers due to electrospinning and its effect on biological function.
    Damaraju SM; Wu S; Jaffe M; Arinzeh TL
    Biomed Mater; 2013 Aug; 8(4):045007. PubMed ID: 23770816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering a multi-biofunctional composite using poly(ethylenimine) decorated graphene oxide for bone tissue regeneration.
    Kumar S; Raj S; Sarkar K; Chatterjee K
    Nanoscale; 2016 Mar; 8(12):6820-36. PubMed ID: 26955801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.