These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
671 related articles for article (PubMed ID: 30772568)
1. Quantifying the impacts of climate variability and human interventions on crop production and food security in the Yangtze River Basin, China, 1990-2015. Xu X; Hu H; Tan Y; Yang G; Zhu P; Jiang B Sci Total Environ; 2019 May; 665():379-389. PubMed ID: 30772568 [TBL] [Abstract][Full Text] [Related]
2. Impact of climate change on crop yield and role of model for achieving food security. Kumar M Environ Monit Assess; 2016 Aug; 188(8):465. PubMed ID: 27418072 [TBL] [Abstract][Full Text] [Related]
3. Climate change impacts on crop production in Iran's Zayandeh-Rud River Basin. Gohari A; Eslamian S; Abedi-Koupaei J; Massah Bavani A; Wang D; Madani K Sci Total Environ; 2013 Jan; 442():405-19. PubMed ID: 23178843 [TBL] [Abstract][Full Text] [Related]
4. SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change. Fereidoon M; Koch M Sci Total Environ; 2018 Jul; 630():502-516. PubMed ID: 29486443 [TBL] [Abstract][Full Text] [Related]
5. Climate change impacts on crop yield: evidence from China. Wei T; Cherry TL; Glomrød S; Zhang T Sci Total Environ; 2014 Nov; 499():133-40. PubMed ID: 25181045 [TBL] [Abstract][Full Text] [Related]
6. [Impacts of climate change on food production in Gansu: A review]. Yang FK; He BL; Gao SM Ying Yong Sheng Tai Xue Bao; 2015 Mar; 26(3):930-8. PubMed ID: 26211078 [TBL] [Abstract][Full Text] [Related]
7. Quantifying the impacts of climatic trend and fluctuation on crop yields in northern China. Qiao J; Yu D; Liu Y Environ Monit Assess; 2017 Oct; 189(11):532. PubMed ID: 28967045 [TBL] [Abstract][Full Text] [Related]
8. Fertilizer response to climate change: Evidence from corn production in China. Quan Q; Yi F; Liu H Sci Total Environ; 2024 Jun; 928():172226. PubMed ID: 38593880 [TBL] [Abstract][Full Text] [Related]
9. How do climatic and management factors affect agricultural ecosystem services? A case study in the agro-pastoral transitional zone of northern China. Qiao J; Yu D; Wu J Sci Total Environ; 2018 Feb; 613-614():314-323. PubMed ID: 28917170 [TBL] [Abstract][Full Text] [Related]
10. Recent changes in county-level maize production in the United States: Spatial-temporal patterns, climatic drivers and the implications for crop modelling. Leng G; Peng J; Huang S Sci Total Environ; 2019 Oct; 686():819-827. PubMed ID: 31195289 [TBL] [Abstract][Full Text] [Related]
11. [Carbon footprint of major grain crops in the middle and lower reaches of the Yangtze River during 2011-2020]. Zhang Y; Gu JY; Wang C; Wang WL; Zhang WY; Gu JF; Liu LJ; Yang JC; Zhang H Ying Yong Sheng Tai Xue Bao; 2023 Dec; 34(12):3364-3372. PubMed ID: 38511376 [TBL] [Abstract][Full Text] [Related]
12. Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Pellegrini P; Fernández RJ Proc Natl Acad Sci U S A; 2018 Mar; 115(10):2335-2340. PubMed ID: 29463755 [TBL] [Abstract][Full Text] [Related]
13. First adaptation of quinoa in the Bhutanese mountain agriculture systems. Katwal TB; Bazile D PLoS One; 2020; 15(1):e0219804. PubMed ID: 31945062 [TBL] [Abstract][Full Text] [Related]
14. Nitrogen balance dynamics during 2000-2010 in the Yangtze River Basin croplands, with special reference to the relative contributions of cropland area and synthetic fertilizer N application rate changes. Wang L; Zheng H; Zhao H; Robinson BE PLoS One; 2017; 12(7):e0180613. PubMed ID: 28678841 [TBL] [Abstract][Full Text] [Related]
15. Flexible Strategies for Coping with Rainfall Variability: Seasonal Adjustments in Cropped Area in the Ganges Basin. Siderius C; Biemans H; van Walsum PE; van Ierland EC; Kabat P; Hellegers PJ PLoS One; 2016; 11(3):e0149397. PubMed ID: 26934389 [TBL] [Abstract][Full Text] [Related]
16. Effects of temperature, precipitation and carbon dioxide concentrations on the requirements for crop irrigation water in China under future climate scenarios. Zhang Y; Wang Y; Niu H Sci Total Environ; 2019 Mar; 656():373-387. PubMed ID: 30513428 [TBL] [Abstract][Full Text] [Related]
17. Phosphorus use efficiency and crop production: Patterns of regional variation in the United States, 1987-2012. Swaney DP; Howarth RW Sci Total Environ; 2019 Oct; 685():174-188. PubMed ID: 31174115 [TBL] [Abstract][Full Text] [Related]
18. Identifying the Impacts of Climate Change and Human Activities on Vegetation Cover Changes: A Case Study of the Yangtze River Basin, China. Yi L; Sun Y; Ouyang X; Yin S Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627774 [TBL] [Abstract][Full Text] [Related]
19. Modeling the water-satisfied degree for production of the main food crops in China. Yu G; Yang Y; Tu Z; Jie Y; Yu Q; Hu X; Yu H; Zhou R; Chen X; Wang H Sci Total Environ; 2016 Mar; 547():215-225. PubMed ID: 26789359 [TBL] [Abstract][Full Text] [Related]
20. Association analysis between spatiotemporal variation of vegetation greenness and precipitation/temperature in the Yangtze River Basin (China). Cui L; Wang L; Singh RP; Lai Z; Jiang L; Yao R Environ Sci Pollut Res Int; 2018 Aug; 25(22):21867-21878. PubMed ID: 29796889 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]