These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30772592)

  • 1. Hydrogen generation and simultaneous removal of Cr(VI) by hydrolysis of NaBH
    Zhao S; Zhang J; Chen Z; Tong Y; Shen J; Li D; Zhang M
    Chemosphere; 2019 May; 223():131-139. PubMed ID: 30772592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cr(VI) removal using different reducing agents combined with fly ash leachate: A comparative study of their efficiency and potential mechanisms.
    Zhao S; Chen Z; Wang B; Shen J; Zhang J; Li D
    Chemosphere; 2018 Dec; 213():172-181. PubMed ID: 30218876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical removal of Cr(VI) from aqueous media using iron and aluminum as electrode materials: towards a better understanding of the involved phenomena.
    Mouedhen G; Feki M; De Petris-Wery M; Ayedi HF
    J Hazard Mater; 2009 Sep; 168(2-3):983-91. PubMed ID: 19329251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of physicochemical factors on Cr(VI) removal from leachate by zero-valent iron and alpha-Fe(2)O(3) nanoparticles.
    Liu TY; Zhao L; Tan X; Liu SJ; Li JJ; Qi Y; Mao GZ
    Water Sci Technol; 2010; 61(11):2759-67. PubMed ID: 20489248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aqueous Cr(VI) removal by a novel ball milled Fe
    Wang K; Sun Y; Tang J; He J; Sun H
    Chemosphere; 2020 Feb; 241():125044. PubMed ID: 31683426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of pH on hexavalent chromium reduction by Fe(II) and sulfide compounds.
    Chen J; Chen R; Hong M
    Water Sci Technol; 2015; 72(1):22-8. PubMed ID: 26114267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of pH and chloride concentration on the removal of hexavalent chromium in a batch electrocoagulation reactor.
    Arroyo MG; Pérez-Herranz V; Montañés MT; García-Antón J; Guiñón JL
    J Hazard Mater; 2009 Sep; 169(1-3):1127-33. PubMed ID: 19464794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Cr(VI) concentration on gas and particle production during iron oxidation in aqueous solutions containing Cl
    Ahn H; Jo HY; Ryu JH; Koh YK
    Environ Technol; 2017 Feb; 38(4):467-473. PubMed ID: 27266724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance and potential mechanism of Cr(VI) reduction and subsequent Cr(III) precipitation using sodium borohydride driven by oxalate.
    Njoya O; Zhao S; Qu Y; Shen J; Wang B; Shi H; Chen Z
    J Environ Manage; 2020 Dec; 275():111165. PubMed ID: 32854051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ bioremediation of hexavalent chromium in presence of iron by dried sludge bacteria exposed to high chromium concentration.
    Bansal N; Coetzee JJ; Chirwa EMN
    Ecotoxicol Environ Saf; 2019 May; 172():281-289. PubMed ID: 30716662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of Chromium(VI) Removal from Drinking Water by Iron Electrocoagulation.
    Pan C; Troyer LD; Catalano JG; Giammar DE
    Environ Sci Technol; 2016 Dec; 50(24):13502-13510. PubMed ID: 27993045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical depassivation for recovering Fe(0) reactivity by Cr(VI) removal with a permeable reactive barrier system.
    Lu X; Li M; Tang C; Feng C; Liu X
    J Hazard Mater; 2012 Apr; 213-214():355-60. PubMed ID: 22386999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustaining the efficiency of the Fe(0)/H
    Gheju M; Balcu I
    Chemosphere; 2019 Jan; 214():389-398. PubMed ID: 30268895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of complex reagents on removal of chromium(VI) by zero-valent iron.
    Zhou H; He Y; Lan Y; Mao J; Chen S
    Chemosphere; 2008 Jun; 72(6):870-4. PubMed ID: 18486963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled reduction of red mud waste to produce active systems for environmental applications: heterogeneous Fenton reaction and reduction of Cr(VI).
    Costa RC; Moura FC; Oliveira PE; Magalhães F; Ardisson JD; Lago RM
    Chemosphere; 2010 Feb; 78(9):1116-20. PubMed ID: 20060564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the removal of hexavalent chromium from a Class F fly ash.
    Huggins FE; Rezaee M; Honaker RQ; Hower JC
    Waste Manag; 2016 May; 51():105-110. PubMed ID: 26951722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of pH on Cr-Fe interaction during Cr(VI) removal by metallic iron.
    Singh IB; Singh DR
    Environ Technol; 2003 Aug; 24(8):1041-7. PubMed ID: 14509396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of pH and dissolved oxygen on Cr(VI) removal in Fe(0)/H2O systems.
    Yoon IH; Bang S; Chang JS; Gyu Kim M; Kim KW
    J Hazard Mater; 2011 Feb; 186(1):855-62. PubMed ID: 21163574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negative impact of oxygen molecular activation on Cr(VI) removal with core-shell Fe@Fe2O3 nanowires.
    Mu Y; Wu H; Ai Z
    J Hazard Mater; 2015 Nov; 298():1-10. PubMed ID: 25988715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-step synthesis and characterization of core-shell Fe@SiO2 nanocomposite for Cr (VI) reduction.
    Li Y; Jin Z; Li T; Xiu Z
    Sci Total Environ; 2012 Apr; 421-422():260-6. PubMed ID: 22381028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.