BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 30772704)

  • 1. Theoretical analysis of nanoshell-assisted thermal treatment for subcutaneous tumor.
    Ma J; Yang X; Sun Y; Yang J; Yu J
    J Mech Behav Biomed Mater; 2019 May; 93():70-80. PubMed ID: 30772704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical investigation of thermal response of laser-irradiated biological tissue phantoms embedded with gold nanoshells.
    Phadnis A; Kumar S; Srivastava A
    J Therm Biol; 2016 Oct; 61():16-28. PubMed ID: 27712656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational study of photo-thermal ablation of large blood vessel embedded tumor using localized injection of gold nanoshells.
    Paul A; Paul A
    J Therm Biol; 2018 Dec; 78():329-342. PubMed ID: 30509655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of plasmonic heating from individual gold nanoshells for near-infrared laser-induced thermal therapy.
    Cheong SK; Krishnan S; Cho SH
    Med Phys; 2009 Oct; 36(10):4664-71. PubMed ID: 19928098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of theranostic perspective of gold-silica nanoshell for cancer nano-medicine: a numerical parametric study.
    Xu X; Bayazitoglu Y; Meade A
    Lasers Med Sci; 2019 Mar; 34(2):377-388. PubMed ID: 30215184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of selective nanoparticle-assisted photothermal treatment for an embedded liver tumor.
    Xu X; Meade A; Bayazitoglu Y
    Lasers Med Sci; 2013 Jul; 28(4):1159-68. PubMed ID: 23053243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of thermal distribution for pulsed laser radiation in cancer treatment with nanoparticle-mediated hyperthermia.
    Sazgarnia A; Naghavi N; Mehdizadeh H; Shahamat Z
    J Therm Biol; 2015 Jan; 47():32-41. PubMed ID: 25526652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical analysis on thermal treatment of skin with repetitive pulses.
    Ma J; Yang X; Sun Y; Yang J
    Sci Rep; 2021 May; 11(1):9958. PubMed ID: 33976290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancer theranostics with gold nanoshells.
    Zhao J; Wallace M; Melancon MP
    Nanomedicine (Lond); 2014 Sep; 9(13):2041-57. PubMed ID: 25343352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered Gold Nanoshells Killing Tumor Cells: New Perspectives.
    De Matteis V; Cascione M; Toma CC; Rinaldi R
    Curr Pharm Des; 2019; 25(13):1477-1489. PubMed ID: 31258061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser-induced hyperthermia of nanoshell mediated vascularized tissue - a numerical study.
    Singh R; Das K; Mishra SC
    J Therm Biol; 2014 Aug; 44():55-62. PubMed ID: 25086974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection and localization of gold nanoshells inside cells: near-field approximation.
    D'Acunto M; Cricenti A; Danti S; Dinarelli S; Luce M; Moroni D; Salvetti O
    Appl Opt; 2016 Dec; 55(34):D11-D16. PubMed ID: 27958433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical solution to heat equation with magnetic resonance experimental verification for nanoshell enhanced thermal therapy.
    Elliott A; Schwartz J; Wang J; Shetty A; Hazle J; Stafford JR
    Lasers Surg Med; 2008 Nov; 40(9):660-5. PubMed ID: 18951423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold nanoshell/polysaccharide nanofilm for controlled laser-assisted tissue thermal ablation.
    Redolfi Riva E; Desii A; Sinibaldi E; Ciofani G; Piazza V; Mazzolai B; Mattoli V
    ACS Nano; 2014 Jun; 8(6):5552-63. PubMed ID: 24797875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy absorption of gold nanoshells in hyperthermia therapy.
    Liu C; Mi CC; Li BQ
    IEEE Trans Nanobioscience; 2008 Sep; 7(3):206-14. PubMed ID: 18779101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal temperature control of tissue embedded with gold nanoparticles for enhanced thermal therapy based on two-energy equation model.
    Wang SL; Qi H; Ren YT; Chen Q; Ruan LM
    J Therm Biol; 2018 May; 74():264-274. PubMed ID: 29801637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potentials and pitfalls of gold-silica nanoshell as the exogenous contrast agent for optical diagnosis of cancers: a numerical parametric study.
    Xu X
    Lasers Med Sci; 2019 Apr; 34(3):615-628. PubMed ID: 30350124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance.
    Hirsch LR; Stafford RJ; Bankson JA; Sershen SR; Rivera B; Price RE; Hazle JD; Halas NJ; West JL
    Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13549-54. PubMed ID: 14597719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface modification with zwitterionic cysteine betaine for nanoshell-assisted near-infrared plasmonic hyperthermia.
    Huang CJ; Chu SH; Li CH; Lee TR
    Colloids Surf B Biointerfaces; 2016 Sep; 145():291-300. PubMed ID: 27208443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal and elastic response of subcutaneous tissue with different fibrous septa architectures to RF heating: numerical study.
    González-Suárez A; Gutierrez-Herrera E; Berjano E; Jimenez Lozano JN; Franco W
    Lasers Surg Med; 2015 Feb; 47(2):183-95. PubMed ID: 25651998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.