BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30772759)

  • 1. Macroporous hydrogels derived from aqueous dynamic phase separation.
    Broguiere N; Husch A; Palazzolo G; Bradke F; Madduri S; Zenobi-Wong M
    Biomaterials; 2019 Apr; 200():56-65. PubMed ID: 30772759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications.
    Lévesque SG; Lim RM; Shoichet MS
    Biomaterials; 2005 Dec; 26(35):7436-46. PubMed ID: 16023718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel enzymatically cross-linked hyaluronan hydrogels support the formation of 3D neuronal networks.
    Broguiere N; Isenmann L; Zenobi-Wong M
    Biomaterials; 2016 Aug; 99():47-55. PubMed ID: 27209262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension.
    Namba RM; Cole AA; Bjugstad KB; Mahoney MJ
    Acta Biomater; 2009 Jul; 5(6):1884-97. PubMed ID: 19250891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production and in vitro evaluation of macroporous, cell-encapsulating alginate fibres for nerve repair.
    Lin SC; Wang Y; Wertheim DF; Coombes AGA
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():653-664. PubMed ID: 28183657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of neurite outgrowth in 3D hydrogel-based environments.
    Assunção-Silva RC; Oliveira CC; Ziv-Polat O; Gomes ED; Sahar A; Sousa N; Silva NA; Salgado AJ
    Biomed Mater; 2015 Oct; 10(5):051001. PubMed ID: 26480959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The enhancement of cell adherence and inducement of neurite outgrowth of dorsal root ganglia co-cultured with hyaluronic acid hydrogels modified with Nogo-66 receptor antagonist in vitro.
    Hou S; Tian W; Xu Q; Cui F; Zhang J; Lu Q; Zhao C
    Neuroscience; 2006; 137(2):519-29. PubMed ID: 16298084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of Injectable Self-Healing Macroporous Hydrogels via a Template-Free Method for Tissue Engineering and Drug Delivery.
    Wang L; Deng F; Wang W; Li A; Lu C; Chen H; Wu G; Nan K; Li L
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36721-36732. PubMed ID: 30261143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile fabrication of superporous and biocompatible hydrogel scaffolds for artificial corneal periphery.
    Lee YP; Liu HY; Lin PC; Lee YH; Yu LR; Hsieh CC; Shih PJ; Shih WP; Wang IJ; Yen JY; Dai CA
    Colloids Surf B Biointerfaces; 2019 Mar; 175():26-35. PubMed ID: 30513471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of three-dimensional interconnected macroporous cellulosic hydrogels for soft tissue engineering.
    Yue Z; Wen F; Gao S; Ang MY; Pallathadka PK; Liu L; Yu H
    Biomaterials; 2010 Nov; 31(32):8141-52. PubMed ID: 20691470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved vascularization of porous scaffolds through growth factor delivery from heparinized polyethylene glycol hydrogels.
    Janse van Rensburg A; Davies NH; Oosthuysen A; Chokoza C; Zilla P; Bezuidenhout D
    Acta Biomater; 2017 Feb; 49():89-100. PubMed ID: 27865963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyaluronic acid-fibrin interpenetrating double network hydrogel prepared in situ by orthogonal disulfide cross-linking reaction for biomedical applications.
    Zhang Y; Heher P; Hilborn J; Redl H; Ossipov DA
    Acta Biomater; 2016 Jul; 38():23-32. PubMed ID: 27134013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogel-based three-dimensional matrix for neural cells.
    Bellamkonda R; Ranieri JP; Bouche N; Aebischer P
    J Biomed Mater Res; 1995 May; 29(5):663-71. PubMed ID: 7622552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of physical structure and charge on neurite extension in a 3D hydrogel scaffold.
    Dillon GP; Yu X; Sridharan A; Ranieri JP; Bellamkonda RV
    J Biomater Sci Polym Ed; 1998; 9(10):1049-69. PubMed ID: 9806445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Templated Macroporous Polyethylene Glycol Hydrogels for Spheroid and Aggregate Cell Culture.
    Imaninezhad M; Hill L; Kolar G; Vogt K; Zustiak SP
    Bioconjug Chem; 2019 Jan; 30(1):34-46. PubMed ID: 30562006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of macroporous poly(ethylene glycol)-based hydrogels for tissue engineering application.
    Sannino A; Netti PA; Madaghiele M; Coccoli V; Luciani A; Maffezzoli A; Nicolais L
    J Biomed Mater Res A; 2006 Nov; 79(2):229-36. PubMed ID: 16752396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of in situ cross-linkable macroporous biodegradable poly(propylene fumarate-co-ethylene glycol) hydrogels.
    Behravesh E; Jo S; Zygourakis K; Mikos AG
    Biomacromolecules; 2002; 3(2):374-81. PubMed ID: 11888325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A laminin and nerve growth factor-laden three-dimensional scaffold for enhanced neurite extension.
    Yu X; Dillon GP; Bellamkonda RB
    Tissue Eng; 1999 Aug; 5(4):291-304. PubMed ID: 10477852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of sponge-like macroporous PVA hydrogels via n-HA enhanced phase separation and their potential as wound dressing.
    Feng R; Fu R; Duan Z; Zhu C; Ma X; Fan D; Li X
    J Biomater Sci Polym Ed; 2018 Aug; 29(12):1463-1481. PubMed ID: 29734864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aligned hydrogel tubes guide regeneration following spinal cord injury.
    Dumont CM; Carlson MA; Munsell MK; Ciciriello AJ; Strnadova K; Park J; Cummings BJ; Anderson AJ; Shea LD
    Acta Biomater; 2019 Mar; 86():312-322. PubMed ID: 30610918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.