BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 30772930)

  • 1. Comparative study of different wavelet-based neural network models to predict sewage sludge quantity in wastewater treatment plant.
    Zeinolabedini M; Najafzadeh M
    Environ Monit Assess; 2019 Feb; 191(3):163. PubMed ID: 30772930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Derivation of optimal equations for prediction of sewage sludge quantity using wavelet conjunction models: an environmental assessment.
    Najafzadeh M; Zeinolabedini M
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):22931-22943. PubMed ID: 29858993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial neural network based models for predicting the effluent quality of a combined upflow anaerobic sludge blanket and facultative pond: Performance evaluation and comparison of different algorithms.
    Khatri N; Vyas AK; Abdul-Qawy ASH; Rene ER
    Environ Res; 2023 Jan; 217():114843. PubMed ID: 36400228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of machine learning algorithms and feature selection methods for better prediction of sludge production in a real advanced biological wastewater treatment plant.
    Ekinci E; Özbay B; Omurca Sİ; Sayın FE; Özbay İ
    J Environ Manage; 2023 Dec; 348():119448. PubMed ID: 37931437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the performance of "up-flow anaerobic sludge blanket" reactor based wastewater treatment plant using linear and nonlinear approaches--a case study.
    Singh KP; Basant N; Malik A; Jain G
    Anal Chim Acta; 2010 Jan; 658(1):1-11. PubMed ID: 20082768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Groundwater level response identification by hybrid wavelet-machine learning conjunction models using meteorological data.
    Samani S; Vadiati M; Nejatijahromi Z; Etebari B; Kisi O
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):22863-22884. PubMed ID: 36308648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP.
    Jalal FE; Xu Y; Iqbal M; Javed MF; Jamhiri B
    J Environ Manage; 2021 Jul; 289():112420. PubMed ID: 33831756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using radial basis artificial neural networks to predict radiation hazard indices in geological materials.
    Erzin S
    Environ Monit Assess; 2024 Feb; 196(3):315. PubMed ID: 38416264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of soil erodibility in Peninsular Malaysia: A case study using multiple linear regression and artificial neural networks.
    Rehman MA; Abd Rahman N; Ibrahim ANH; Kamal NA; Ahmad A
    Heliyon; 2024 Apr; 10(7):e28854. PubMed ID: 38576554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of potentially toxic elements in water resources using MLP-NN, RBF-NN, and ANFIS: a comprehensive review.
    Agbasi JC; Egbueri JC
    Environ Sci Pollut Res Int; 2024 May; 31(21):30370-30398. PubMed ID: 38641692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring diel dissolved oxygen dynamics through integrating wavelet denoising and temporal neural networks.
    Evrendilek F; Karakaya N
    Environ Monit Assess; 2014 Mar; 186(3):1583-91. PubMed ID: 24100799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: a case study in United States.
    Olyaie E; Banejad H; Chau KW; Melesse AM
    Environ Monit Assess; 2015 Apr; 187(4):189. PubMed ID: 25787167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of data-driven models for runoff, sediment, and nitrate forecasting.
    Zamani MG; Nikoo MR; Rastad D; Nematollahi B
    J Environ Manage; 2023 Sep; 341():118006. PubMed ID: 37163836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effluent quality prediction of the sewage treatment based on a hybrid neural network model: Comparison and application.
    Wang Z; Dai H; Chen B; Cheng S; Sun Y; Zhao J; Guo Z; Cai X; Wang X; Li B; Geng H
    J Environ Manage; 2024 Feb; 351():119900. PubMed ID: 38157580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of radial basis function artificial neural network to quantify interfacial energies related to membrane fouling in a membrane bioreactor.
    Chen Y; Yu G; Long Y; Teng J; You X; Liao BQ; Lin H
    Bioresour Technol; 2019 Dec; 293():122103. PubMed ID: 31505391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of water quality index in constructed wetlands using support vector machine.
    Mohammadpour R; Shaharuddin S; Chang CK; Zakaria NA; Ab Ghani A; Chan NW
    Environ Sci Pollut Res Int; 2015 Apr; 22(8):6208-19. PubMed ID: 25408070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radial basis function artificial neural network able to accurately predict disinfection by-product levels in tap water: Taking haloacetic acids as a case study.
    Lin H; Dai Q; Zheng L; Hong H; Deng W; Wu F
    Chemosphere; 2020 Jun; 248():125999. PubMed ID: 32006834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of COD in industrial wastewater treatment plant using an artificial neural network.
    Çimen Mesutoğlu Ö; Gök O
    Sci Rep; 2024 Jun; 14(1):13750. PubMed ID: 38877150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating daily PM
    Guo Q; He Z; Wang Z
    Chemosphere; 2023 Nov; 340():139886. PubMed ID: 37611770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of spectrophotometric simultaneous absorption of Salmeterol and Fluticasone in Seroflo spray by continuous wavelet transform and radial basis function neural network methods.
    Valizadeh M; Sohrabi M; Ameri Braki Z; Rashidi R; Pezeshkpur M
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec; 263():120192. PubMed ID: 34314967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.