These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 30772930)
1. Comparative study of different wavelet-based neural network models to predict sewage sludge quantity in wastewater treatment plant. Zeinolabedini M; Najafzadeh M Environ Monit Assess; 2019 Feb; 191(3):163. PubMed ID: 30772930 [TBL] [Abstract][Full Text] [Related]
2. Derivation of optimal equations for prediction of sewage sludge quantity using wavelet conjunction models: an environmental assessment. Najafzadeh M; Zeinolabedini M Environ Sci Pollut Res Int; 2018 Aug; 25(23):22931-22943. PubMed ID: 29858993 [TBL] [Abstract][Full Text] [Related]
3. Artificial neural network based models for predicting the effluent quality of a combined upflow anaerobic sludge blanket and facultative pond: Performance evaluation and comparison of different algorithms. Khatri N; Vyas AK; Abdul-Qawy ASH; Rene ER Environ Res; 2023 Jan; 217():114843. PubMed ID: 36400228 [TBL] [Abstract][Full Text] [Related]
4. Application of machine learning algorithms and feature selection methods for better prediction of sludge production in a real advanced biological wastewater treatment plant. Ekinci E; Özbay B; Omurca Sİ; Sayın FE; Özbay İ J Environ Manage; 2023 Dec; 348():119448. PubMed ID: 37931437 [TBL] [Abstract][Full Text] [Related]
5. Modeling the performance of "up-flow anaerobic sludge blanket" reactor based wastewater treatment plant using linear and nonlinear approaches--a case study. Singh KP; Basant N; Malik A; Jain G Anal Chim Acta; 2010 Jan; 658(1):1-11. PubMed ID: 20082768 [TBL] [Abstract][Full Text] [Related]
6. Groundwater level response identification by hybrid wavelet-machine learning conjunction models using meteorological data. Samani S; Vadiati M; Nejatijahromi Z; Etebari B; Kisi O Environ Sci Pollut Res Int; 2023 Feb; 30(9):22863-22884. PubMed ID: 36308648 [TBL] [Abstract][Full Text] [Related]
7. Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP. Jalal FE; Xu Y; Iqbal M; Javed MF; Jamhiri B J Environ Manage; 2021 Jul; 289():112420. PubMed ID: 33831756 [TBL] [Abstract][Full Text] [Related]
8. Using radial basis artificial neural networks to predict radiation hazard indices in geological materials. Erzin S Environ Monit Assess; 2024 Feb; 196(3):315. PubMed ID: 38416264 [TBL] [Abstract][Full Text] [Related]
9. Estimation of soil erodibility in Peninsular Malaysia: A case study using multiple linear regression and artificial neural networks. Rehman MA; Abd Rahman N; Ibrahim ANH; Kamal NA; Ahmad A Heliyon; 2024 Apr; 10(7):e28854. PubMed ID: 38576554 [TBL] [Abstract][Full Text] [Related]
10. Prediction of potentially toxic elements in water resources using MLP-NN, RBF-NN, and ANFIS: a comprehensive review. Agbasi JC; Egbueri JC Environ Sci Pollut Res Int; 2024 May; 31(21):30370-30398. PubMed ID: 38641692 [TBL] [Abstract][Full Text] [Related]
11. Monitoring diel dissolved oxygen dynamics through integrating wavelet denoising and temporal neural networks. Evrendilek F; Karakaya N Environ Monit Assess; 2014 Mar; 186(3):1583-91. PubMed ID: 24100799 [TBL] [Abstract][Full Text] [Related]
12. A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: a case study in United States. Olyaie E; Banejad H; Chau KW; Melesse AM Environ Monit Assess; 2015 Apr; 187(4):189. PubMed ID: 25787167 [TBL] [Abstract][Full Text] [Related]
13. A comparative study of data-driven models for runoff, sediment, and nitrate forecasting. Zamani MG; Nikoo MR; Rastad D; Nematollahi B J Environ Manage; 2023 Sep; 341():118006. PubMed ID: 37163836 [TBL] [Abstract][Full Text] [Related]
14. Understanding machine learning predictions of wastewater treatment plant sludge with explainable artificial intelligence. Nasir FB; Li J Water Environ Res; 2024 Oct; 96(10):e11136. PubMed ID: 39322560 [TBL] [Abstract][Full Text] [Related]
15. Effluent quality prediction of the sewage treatment based on a hybrid neural network model: Comparison and application. Wang Z; Dai H; Chen B; Cheng S; Sun Y; Zhao J; Guo Z; Cai X; Wang X; Li B; Geng H J Environ Manage; 2024 Feb; 351():119900. PubMed ID: 38157580 [TBL] [Abstract][Full Text] [Related]
16. Application of radial basis function artificial neural network to quantify interfacial energies related to membrane fouling in a membrane bioreactor. Chen Y; Yu G; Long Y; Teng J; You X; Liao BQ; Lin H Bioresour Technol; 2019 Dec; 293():122103. PubMed ID: 31505391 [TBL] [Abstract][Full Text] [Related]
17. Prediction of water quality index in constructed wetlands using support vector machine. Mohammadpour R; Shaharuddin S; Chang CK; Zakaria NA; Ab Ghani A; Chan NW Environ Sci Pollut Res Int; 2015 Apr; 22(8):6208-19. PubMed ID: 25408070 [TBL] [Abstract][Full Text] [Related]
18. Radial basis function artificial neural network able to accurately predict disinfection by-product levels in tap water: Taking haloacetic acids as a case study. Lin H; Dai Q; Zheng L; Hong H; Deng W; Wu F Chemosphere; 2020 Jun; 248():125999. PubMed ID: 32006834 [TBL] [Abstract][Full Text] [Related]
19. Prediction of COD in industrial wastewater treatment plant using an artificial neural network. Çimen Mesutoğlu Ö; Gök O Sci Rep; 2024 Jun; 14(1):13750. PubMed ID: 38877150 [TBL] [Abstract][Full Text] [Related]