These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30773010)

  • 1. Drastically Reduced Ion Mobility in a Nanopore Due to Enhanced Pairing and Collisions between Dehydrated Ions.
    Ma J; Li K; Li Z; Qiu Y; Si W; Ge Y; Sha J; Liu L; Xie X; Yi H; Ni Z; Li D; Chen Y
    J Am Chem Soc; 2019 Mar; 141(10):4264-4272. PubMed ID: 30773010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MD Study of Solution Concentrations on Ion Distribution in a Nanopore-Based Device Inspired from Red Blood Cells.
    Ge Y; Xian J; Kang M; Li X; Jin M
    Comput Math Methods Med; 2016; 2016():2787382. PubMed ID: 27446233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of counter-ions on the ion selectivity of potassium and sodium ions in nanopores.
    Tang D; Kim D
    Biomed Mater Eng; 2014; 24(1):383-90. PubMed ID: 24211920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion exclusion and electrokinetic effects resulting from electro-osmotic flow of salt solutions in charged silica nanopores.
    Haria NR; Lorenz CD
    Phys Chem Chem Phys; 2012 May; 14(17):5935-44. PubMed ID: 22441317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aqueous NaCl and CsCl solutions confined in crystalline slit-shaped silica nanopores of varying degree of protonation.
    Ho TA; Argyris D; Cole DR; Striolo A
    Langmuir; 2012 Jan; 28(2):1256-66. PubMed ID: 22148873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aqueous electrolytes confined within functionalized silica nanopores.
    Videla PE; Sala J; Martí J; Guàrdia E; Laria D
    J Chem Phys; 2011 Sep; 135(10):104503. PubMed ID: 21932906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic current modulation from DNA translocation through nanopores under high ionic strength and concentration gradients.
    Zhang Y; Wu G; Si W; Ma J; Yuan Z; Xie X; Liu L; Sha J; Li D; Chen Y
    Nanoscale; 2017 Jan; 9(2):930-939. PubMed ID: 28000822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of ion migration in nanopores and the effect of DNA-ion interaction.
    Cui S
    J Phys Chem B; 2011 Sep; 115(36):10699-706. PubMed ID: 21800829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing biomimetic pores based on carbon nanotubes.
    García-Fandiño R; Sansom MS
    Proc Natl Acad Sci U S A; 2012 May; 109(18):6939-44. PubMed ID: 22509000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulations of ion conductance in field-stabilized nanoscale lipid electropores.
    Ho MC; Casciola M; Levine ZA; Vernier PT
    J Phys Chem B; 2013 Oct; 117(39):11633-40. PubMed ID: 24001115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of Molecular Flux Using a Graphene Nanopore Capacitor.
    Shankla M; Aksimentiev A
    J Phys Chem B; 2017 Apr; 121(15):3724-3733. PubMed ID: 28009170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na⁺ and K⁺ ion selectivity by size-controlled biomimetic graphene nanopores.
    Kang Y; Zhang Z; Shi H; Zhang J; Liang L; Wang Q; Ågren H; Tu Y
    Nanoscale; 2014 Sep; 6(18):10666-72. PubMed ID: 25089590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of the molecular dynamics method for simulations of DNA and ion transport through biological nanopores.
    Wells DB; Bhattacharya S; Carr R; Maffeo C; Ho A; Comer J; Aksimentiev A
    Methods Mol Biol; 2012; 870():165-86. PubMed ID: 22528264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion transport through a graphene nanopore.
    Hu G; Mao M; Ghosal S
    Nanotechnology; 2012 Oct; 23(39):395501. PubMed ID: 22962262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion solvation thermodynamics from simulation with a polarizable force field.
    Grossfield A; Ren P; Ponder JW
    J Am Chem Soc; 2003 Dec; 125(50):15671-82. PubMed ID: 14664617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of a dissociative potential to simulate hydration of Na+ and Cl- ions.
    Webb MB; Garofalini SH; Scherer GW
    J Phys Chem B; 2009 Jul; 113(29):9886-93. PubMed ID: 19569628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of steady-state ion transport through single conical nanopores and a nonuniform distribution of surface charges.
    Liu J; Wang D; Kvetny M; Brown W; Li Y; Wang G
    Langmuir; 2013 Jul; 29(27):8743-52. PubMed ID: 23799796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rectification of Ion Current in Nanopores Depends on the Type of Monovalent Cations: Experiments and Modeling.
    Gamble T; Decker K; Plett TS; Pevarnik M; Pietschmann JF; Vlassiouk I; Aksimentiev A; Siwy ZS
    J Phys Chem C Nanomater Interfaces; 2014 May; 118(18):9809-9819. PubMed ID: 25678940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic design of a brush-like nanopore: simulation studies.
    Pongprayoon P; Beckstein O; Sansom MS
    J Phys Chem B; 2012 Jan; 116(1):462-8. PubMed ID: 22129038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confinement of aqueous mixtures of ionic liquids between amorphous TiO
    Mohammadpour F; Heydari Dokoohaki M; Zolghadr AR; Ghatee MH; Moradi M
    Phys Chem Chem Phys; 2018 Nov; 20(46):29493-29502. PubMed ID: 30456396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.