These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 30773019)
1. Tracing Size and Surface Chemistry-Dependent Endosomal Uptake of Gold Nanoparticles Using Surface-Enhanced Raman Scattering. Öztaş DY; Altunbek M; Uzunoglu D; Yılmaz H; Çetin D; Suludere Z; Çulha M Langmuir; 2019 Mar; 35(11):4020-4028. PubMed ID: 30773019 [TBL] [Abstract][Full Text] [Related]
2. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate. Ngo YH; Li D; Simon GP; Garnier G Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710 [TBL] [Abstract][Full Text] [Related]
3. Size-dependent apoptotic activity of gold nanoparticles on osteosarcoma cells correlated with SERS signal. Chakraborty A; Das A; Raha S; Barui A J Photochem Photobiol B; 2020 Jan; 203():111778. PubMed ID: 31931389 [TBL] [Abstract][Full Text] [Related]
4. Gold nanoparticles paper as a SERS bio-diagnostic platform. Ngo YH; Then WL; Shen W; Garnier G J Colloid Interface Sci; 2013 Nov; 409():59-65. PubMed ID: 23978290 [TBL] [Abstract][Full Text] [Related]
5. Highly efficient surface-enhanced Raman scattering substrate formulation by self-assembled gold nanoparticles physisorbed on poly(N-isopropylacrylamide) thermoresponsive hydrogels. Manikas AC; Romeo G; Papa A; Netti PA Langmuir; 2014 Apr; 30(13):3869-75. PubMed ID: 24650247 [TBL] [Abstract][Full Text] [Related]
6. Effect of cationic polyacrylamides on the aggregation and SERS performance of gold nanoparticles-treated paper. Ngo YH; Li D; Simon GP; Garnier G J Colloid Interface Sci; 2013 Feb; 392():237-246. PubMed ID: 23131808 [TBL] [Abstract][Full Text] [Related]
7. Proof-of-principle for SERS imaging of Aspergillus nidulans hyphae using in vivo synthesis of gold nanoparticles. Prusinkiewicz MA; Farazkhorasani F; Dynes JJ; Wang J; Gough KM; Kaminskyj SG Analyst; 2012 Nov; 137(21):4934-42. PubMed ID: 22900260 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of lipophilic gold nanoparticles for studying lipids by surface enhanced Raman spectroscopy (SERS). Driver M; Li Y; Zheng J; Decker E; Julian McClements D; He L Analyst; 2014 Jul; 139(13):3352-5. PubMed ID: 24835140 [TBL] [Abstract][Full Text] [Related]
10. Interactions of phenyldithioesters with gold nanoparticles (AuNPs): implications for AuNP functionalization and molecular barcoding of AuNP assemblies. Blakey I; Schiller TL; Merican Z; Fredericks PM Langmuir; 2010 Jan; 26(2):692-701. PubMed ID: 19824687 [TBL] [Abstract][Full Text] [Related]
11. Gold Nanoparticles in Single-Cell Analysis for Surface Enhanced Raman Scattering. Altunbek M; Kuku G; Culha M Molecules; 2016 Nov; 21(12):. PubMed ID: 27897986 [TBL] [Abstract][Full Text] [Related]
12. Amphiphilic gold nanoparticles displaying flexible bifurcated ligands as a carrier for siRNA delivery into the cell cytosol. Niikura K; Kobayashi K; Takeuchi C; Fujitani N; Takahara S; Ninomiya T; Hagiwara K; Mitomo H; Ito Y; Osada Y; Ijiro K ACS Appl Mater Interfaces; 2014 Dec; 6(24):22146-54. PubMed ID: 25466488 [TBL] [Abstract][Full Text] [Related]
13. Plasmonically Enhanced Galactoxyloglucan Endowed Gold Nanoparticles Exposed Tumor Targeting Biodistribution Envisaged in a Surface-Enhanced Raman Scattering Platform. Joseph MM; Nair JB; Maiti KK; Therakathinal T S Biomacromolecules; 2017 Dec; 18(12):4041-4053. PubMed ID: 29141148 [TBL] [Abstract][Full Text] [Related]
14. Stable gold nanoparticle conjugation to internal DNA positions: facile generation of discrete gold nanoparticle-DNA assemblies. Wen Y; McLaughlin CK; Lo PK; Yang H; Sleiman HF Bioconjug Chem; 2010 Aug; 21(8):1413-6. PubMed ID: 20666441 [TBL] [Abstract][Full Text] [Related]
15. SERS Sensing of Bacterial Endotoxin on Gold Nanoparticles. Verde A; Mangini M; Managò S; Tramontano C; Rea I; Boraschi D; Italiani P; De Luca AC Front Immunol; 2021; 12():758410. PubMed ID: 34691081 [TBL] [Abstract][Full Text] [Related]
16. Surface-Enhanced Raman Scattering Active Gold Nanoparticles with Enzyme-Mimicking Activities for Measuring Glucose and Lactate in Living Tissues. Hu Y; Cheng H; Zhao X; Wu J; Muhammad F; Lin S; He J; Zhou L; Zhang C; Deng Y; Wang P; Zhou Z; Nie S; Wei H ACS Nano; 2017 Jun; 11(6):5558-5566. PubMed ID: 28549217 [TBL] [Abstract][Full Text] [Related]
17. Surface-enhanced Raman scattering investigation of bovine serum albumin by Au nanoparticles with different sizes. Xiaodan W; Dawei Z; Ping Z; Taifeng L; Huiqin W; Yongwei Z J Appl Biomater Funct Mater; 2018 Jan; 16(1_suppl):157-162. PubMed ID: 29618248 [TBL] [Abstract][Full Text] [Related]
18. Controllable synthesis of water-soluble gold nanoparticles and their applications in electrocatalysis and surface-enhanced Raman scattering. Qiao Y; Chen H; Lin Y; Huang J Langmuir; 2011 Sep; 27(17):11090-7. PubMed ID: 21761928 [TBL] [Abstract][Full Text] [Related]
19. Transfer printing of metal nanoparticles with controllable dimensions, placement, and reproducible surface-enhanced Raman scattering effects. Xue M; Zhang Z; Zhu N; Wang F; Zhao XS; Cao T Langmuir; 2009 Apr; 25(8):4347-51. PubMed ID: 19320428 [TBL] [Abstract][Full Text] [Related]
20. Controlled Assembly of Gold Nanostructures on a Solid Substrate via Imidazole Directed Hydrogen Bonding for High Performance Surface Enhance Raman Scattering Sensing of Hypochlorous Acid. Sun J; Liu R; Tang J; Zhang Z; Zhou X; Liu J ACS Appl Mater Interfaces; 2015 Aug; 7(30):16730-7. PubMed ID: 26167718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]