These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 30773415)

  • 1. The energy dependence of contrast and damage in electron cryomicroscopy of biological molecules.
    Peet MJ; Henderson R; Russo CJ
    Ultramicroscopy; 2019 Aug; 203():125-131. PubMed ID: 30773415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CryoEM at 100 keV: a demonstration and prospects.
    Naydenova K; McMullan G; Peet MJ; Lee Y; Edwards PC; Chen S; Leahy E; Scotcher S; Henderson R; Russo CJ
    IUCrJ; 2019 Nov; 6(Pt 6):1086-1098. PubMed ID: 31709064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the reduction in the effects of radiation damage to two-dimensional crystals of organic and biological molecules at liquid-helium temperature.
    Naydenova K; Kamegawa A; Peet MJ; Henderson R; Fujiyoshi Y; Russo CJ
    Ultramicroscopy; 2022 Jul; 237():113512. PubMed ID: 35367901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging biological macromolecules in thick specimens: The role of inelastic scattering in cryoEM.
    Dickerson JL; Lu PH; Hristov D; Dunin-Borkowski RE; Russo CJ
    Ultramicroscopy; 2022 Jul; 237():113510. PubMed ID: 35367900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiation damage in electron cryomicroscopy.
    Baker LA; Rubinstein JL
    Methods Enzymol; 2010; 481():371-88. PubMed ID: 20887865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coherent and incoherent imaging of biological specimens with electrons and X-rays.
    Rez P
    Ultramicroscopy; 2021 Dec; 231():113301. PubMed ID: 34006395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastic and inelastic mean free paths for scattering of fast electrons in thin-film oxides.
    Basha A; Levi G; Amrani T; Li Y; Ankonina G; Shekhter P; Kornblum L; Goldfarb I; Kohn A
    Ultramicroscopy; 2022 Oct; 240():113570. PubMed ID: 35700667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image contrast in high-resolution electron microscopy of biological macromolecules: TMV in ice.
    Henderson R
    Ultramicroscopy; 1992 Oct; 46(1-4):1-18. PubMed ID: 1481269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmission Electron Diffraction at 200 eV and Damage Thresholds below the Carbon K Edge.
    Stevens MR; Chen Q; Weierstall U; Spence JC
    Microsc Microanal; 2000 Jul; 6(4):368-379. PubMed ID: 10898822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of image formation for thick biological specimens: exit wavefront reconstruction and electron energy-loss spectroscopic imaging.
    Han KF; Sedat JW; Agard DA
    J Microsc; 1995 May; 178(Pt 2):107-19. PubMed ID: 7783184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryomicroscopy of radiation sensitive specimens on unmodified graphene sheets: reduction of electron-optical effects of charging.
    Sader K; Stopps M; Calder LJ; Rosenthal PB
    J Struct Biol; 2013 Sep; 183(3):531-536. PubMed ID: 23664842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CryoEM: a crystals to single particles round-trip.
    Hebert H
    Curr Opin Struct Biol; 2019 Oct; 58():59-67. PubMed ID: 31233976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superposition of chromatic error and beam broadening in transmission electron microscopy of thick carbon and organic specimens.
    Reimer L; Gentsch P
    Ultramicroscopy; 1975 Jul; 1(1):1-5. PubMed ID: 1236016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules.
    Henderson R
    Q Rev Biophys; 1995 May; 28(2):171-93. PubMed ID: 7568675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thon rings from amorphous ice and implications of beam-induced Brownian motion in single particle electron cryo-microscopy.
    McMullan G; Vinothkumar KR; Henderson R
    Ultramicroscopy; 2015 Nov; 158():26-32. PubMed ID: 26103047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benefits and Limitations of Low-kV Macromolecular Imaging of Frozen-Hydrated Biological Samples.
    Majorovits E; Angert I; Kaiser U; Schröder RR
    Biophys J; 2016 Feb; 110(4):776-84. PubMed ID: 26910420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specimen Behavior in the Electron Beam.
    Glaeser RM
    Methods Enzymol; 2016; 579():19-50. PubMed ID: 27572722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photon beams for radiosurgery produced by laser Compton backscattering from relativistic electrons.
    Girolami B; Larsson B; Preger M; Schaerf C; Stepanek J
    Phys Med Biol; 1996 Sep; 41(9):1581-96. PubMed ID: 8884899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron beam broadening in electron-transparent samples at low electron energies.
    Hugenschmidt M; Müller E; Gerthsen D
    J Microsc; 2019 Jun; 274(3):150-157. PubMed ID: 31001840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal strategies for imaging thick biological specimens: exit wavefront reconstruction and energy-filtered imaging.
    Han KF; Gubbens AJ; Sedat JW; Agard DA
    J Microsc; 1996 Aug; 183(Pt 2):124-32. PubMed ID: 8805824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.