These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30773417)

  • 1. Comparison of different imaging models handling partial coherence for aberration-corrected HRTEM at 40-80 kV.
    Lee Z; Lehnert T; Kaiser U; Rose H
    Ultramicroscopy; 2019 Aug; 203():68-75. PubMed ID: 30773417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimum HRTEM image contrast at 20 kV and 80 kV--exemplified by graphene.
    Lee Z; Meyer JC; Rose H; Kaiser U
    Ultramicroscopy; 2012 Jan; 112(1):39-46. PubMed ID: 22088506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First observation of In(x)Ga(1-x)As quantum dots in GaP by spherical-aberration-corrected HRTEM in comparison with ADF-STEM and conventional HRTEM.
    Tanaka N; Yamasaki J; Fuchi S; Takeda Y
    Microsc Microanal; 2004 Feb; 10(1):139-45. PubMed ID: 15306078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear versus non-linear structural information limit in high-resolution transmission electron microscopy.
    Van Aert S; Chen JH; Van Dyck D
    Ultramicroscopy; 2010 Oct; 110(11):1404-10. PubMed ID: 20655146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Image transfer with spatial coherence for aberration corrected transmission electron microscopes.
    Hosokawa F; Sawada H; Shinkawa T; Sannomiya T
    Ultramicroscopy; 2016 Aug; 167():11-20. PubMed ID: 27155359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computationally Efficient Handling of Partially Coherent Electron Sources in (S)TEM Image Simulations via Matrix Diagonalization.
    Li Z; Rose H; Madsen J; Biskupek J; Susi T; Kaiser U
    Microsc Microanal; 2022 Sep; ():1-9. PubMed ID: 36104826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beam alignment and related problems of spherical aberration corrected high-resolution TEM images.
    Hu J; Tanaka N
    J Electron Microsc (Tokyo); 2000; 49(5):651-6. PubMed ID: 11110471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of dynamical scattering on quantitative contrast for aberration-corrected transmission electron microscope images.
    Wen C; Smith DJ
    Micron; 2016 Oct; 89():77-86. PubMed ID: 27522350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Future trends in aberration-corrected electron microscopy.
    Rose HH
    Philos Trans A Math Phys Eng Sci; 2009 Sep; 367(1903):3809-23. PubMed ID: 19687067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Contrast Transfer Function approach for image calculations in standard and aberration-corrected LEEM and PEEM.
    Schramm SM; Pang AB; Altman MS; Tromp RM
    Ultramicroscopy; 2012 Apr; 115():88-108. PubMed ID: 22209472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prospects of atomic resolution imaging with an aberration-corrected STEM.
    Ishizuka K
    J Electron Microsc (Tokyo); 2001; 50(4):291-305. PubMed ID: 11592674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron ptychographic phase imaging of light elements in crystalline materials using Wigner distribution deconvolution.
    Yang H; MacLaren I; Jones L; Martinez GT; Simson M; Huth M; Ryll H; Soltau H; Sagawa R; Kondo Y; Ophus C; Ercius P; Jin L; Kovács A; Nellist PD
    Ultramicroscopy; 2017 Sep; 180():173-179. PubMed ID: 28434783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A proposal for the holographic correction of incoherent aberrations by tilted reference waves.
    Röder F; Lubk A
    Ultramicroscopy; 2015 May; 152():63-74. PubMed ID: 25680104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of STEM aberration correction on materials science.
    Pennycook SJ
    Ultramicroscopy; 2017 Sep; 180():22-33. PubMed ID: 28438428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of the number of graphene layers on the atomic resolution images obtained from aberration-corrected high resolution transmission electron microscopy.
    Warner JH
    Nanotechnology; 2010 Jun; 21(25):255707. PubMed ID: 20516582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degree of coherence in the image of a quasi-monochromatic source.
    Mallick S
    Appl Opt; 1967 Aug; 6(8):1403-5. PubMed ID: 20062213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic imaging in aberration-corrected high-resolution transmission electron microscopy.
    Chen JH; Zandbergen HW; Dyck DV
    Ultramicroscopy; 2004 Jan; 98(2-4):81-97. PubMed ID: 15046789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using a monochromator to improve the resolution in TEM to below 0.5Å. Part I: Creating highly coherent monochromated illumination.
    Tiemeijer PC; Bischoff M; Freitag B; Kisielowski C
    Ultramicroscopy; 2012 Mar; 114():72-81. PubMed ID: 22356791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of point spread in the aberration-corrected transmission electron microscopy.
    Ge B; Wang Y; Chang Y; Yao Y
    Microsc Microanal; 2014 Oct; 20(5):1447-52. PubMed ID: 25256649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HRTEM image simulations for the study of ultrathin gate oxides.
    Taylor ST; Mardinly J; O'Keefe MA
    Microsc Microanal; 2002 Oct; 8(5):412-21. PubMed ID: 12533217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.