These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 30773555)
21. Assessment of the morphology and dimensional accuracy of 3D printed PLA and PLA/HAp scaffolds. Gendviliene I; Simoliunas E; Rekstyte S; Malinauskas M; Zaleckas L; Jegelevicius D; Bukelskiene V; Rutkunas V J Mech Behav Biomed Mater; 2020 Apr; 104():103616. PubMed ID: 31929097 [TBL] [Abstract][Full Text] [Related]
22. [Dopamine modified and cartilage derived morphogenetic protein 1 laden polycaprolactone-hydroxyapatite composite scaffolds fabricated by three-dimensional printing improve chondrogenic differentiation of human bone marrow mesenchymal stem cells]. Xu Y; Wei B; Zhou J; Yao Q; Wang L; Na J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Feb; 32(2):215-222. PubMed ID: 29806415 [TBL] [Abstract][Full Text] [Related]
23. 3D printed macroporous scaffolds of PCL and inulin-g-P(D,L)LA for bone tissue engineering applications. Tommasino C; Auriemma G; Sardo C; Alvarez-Lorenzo C; Garofalo E; Morello S; Falcone G; Aquino RP Int J Pharm; 2023 Jun; 641():123093. PubMed ID: 37268029 [TBL] [Abstract][Full Text] [Related]
24. Biomimetic surface modification of Three-dimensional printed Polylactic acid scaffolds with custom mechanical properties for bone reconstruction. Shams A; Masaeli E; Ghomi H J Biomater Appl; 2023 Jan; 37(6):1042-1053. PubMed ID: 36565047 [TBL] [Abstract][Full Text] [Related]
25. A natural biomineral for enhancing the biomineralization and cell response of 3D printed polylactic acid bone scaffolds. Guo F; Wang E; Yang Y; Mao Y; Liu C; Bu W; Li P; Zhao L; Jin Q; Liu B; Wang S; You H; Long Y; Zhou N; Guo W Int J Biol Macromol; 2023 Jul; 242(Pt 1):124728. PubMed ID: 37150372 [TBL] [Abstract][Full Text] [Related]
26. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017 [TBL] [Abstract][Full Text] [Related]
27. Effect of nanodiamonds surface deposition on hydrophilicity, bulk degradation and ElBakry HA; Ammar MM; Moussa TA Biomed Mater; 2024 Jul; 19(5):. PubMed ID: 38917826 [TBL] [Abstract][Full Text] [Related]
28. Fabrication of 3D Printed Poly(lactic acid)/Polycaprolactone Scaffolds Using TGF-β1 for Promoting Bone Regeneration. Cheng CH; Shie MY; Lai YH; Foo NP; Lee MJ; Yao CH Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771286 [TBL] [Abstract][Full Text] [Related]
29. Three-dimensional printing of polycaprolactone/hydroxyapatite bone tissue engineering scaffolds mechanical properties and biological behavior. Rezania N; Asadi-Eydivand M; Abolfathi N; Bonakdar S; Mehrjoo M; Solati-Hashjin M J Mater Sci Mater Med; 2022 Mar; 33(3):31. PubMed ID: 35267105 [TBL] [Abstract][Full Text] [Related]
30. The potential bone regeneration effects of leptin- and osteolectin-coated 3D-printed PCL scaffolds: an Kim YR; Yun EB; Ryu DI; Kim BH; Kim JS; Kim YS; Kang JH; Cho EH; Koh JT; Lim HP; Park C; Lee BN Biomed Mater; 2024 May; 19(4):. PubMed ID: 38688311 [TBL] [Abstract][Full Text] [Related]
31. The Design of 3D-Printed Polylactic Acid-Bioglass Composite Scaffold: A Potential Implant Material for Bone Tissue Engineering. Sultan S; Thomas N; Varghese M; Dalvi Y; Joy S; Hall S; Mathew AP Molecules; 2022 Oct; 27(21):. PubMed ID: 36364053 [TBL] [Abstract][Full Text] [Related]
32. Fabrication and characterization of the 3D-printed polycaprolactone/fish bone extract scaffolds for bone tissue regeneration. Heo SY; Ko SC; Oh GW; Kim N; Choi IW; Park WS; Jung WK J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):1937-1944. PubMed ID: 30508311 [TBL] [Abstract][Full Text] [Related]
33. 3D printed dual macro-, microscale porous network as a tissue engineering scaffold with drug delivering function. Dang HP; Shabab T; Shafiee A; Peiffer QC; Fox K; Tran N; Dargaville TR; Hutmacher DW; Tran PA Biofabrication; 2019 Apr; 11(3):035014. PubMed ID: 30933941 [TBL] [Abstract][Full Text] [Related]
34. Osteoregenerative Potential of 3D-Printed Poly Lawrence LM; Salary RR; Miller V; Valluri A; Denning KL; Case-Perry S; Abdelgaber K; Smith S; Claudio PP; Day JB Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902373 [TBL] [Abstract][Full Text] [Related]
35. [Study on the preparation of polycaprolactone/type Shen S; Chen M; Gao S; Guo W; Wang Z; Li H; Li X; Zhang B; Xian H; Zhang X; Liu S; Hao L; Zhuo N; Guo Q Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Sep; 32(9):1205-1210. PubMed ID: 30129332 [TBL] [Abstract][Full Text] [Related]
36. [A preliminary study of three-dimensional bio-printing by polycaprolactone and periodontal ligament stem cells]. Xu J; Hu M Zhonghua Kou Qiang Yi Xue Za Zhi; 2017 Apr; 52(4):238-242. PubMed ID: 28412790 [No Abstract] [Full Text] [Related]
37. Rapid Fabrication of Anatomically-Shaped Bone Scaffolds Using Indirect 3D Printing and Perfusion Techniques. Grottkau BE; Hui Z; Yao Y; Pang Y Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31906530 [TBL] [Abstract][Full Text] [Related]
38. Design, construction and mechanical testing of digital 3D anatomical data-based PCL-HA bone tissue engineering scaffold. Yao Q; Wei B; Guo Y; Jin C; Du X; Yan C; Yan J; Hu W; Xu Y; Zhou Z; Wang Y; Wang L J Mater Sci Mater Med; 2015 Jan; 26(1):5360. PubMed ID: 25596860 [TBL] [Abstract][Full Text] [Related]
40. [Study on preparation of 3D printing degradable tissue engineering ossicles]. Lu XX; Li XX; Zhao DH; Ji JY; Tong BS; Sun JJ Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2020 Aug; 55(8):764-768. PubMed ID: 32791775 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]