These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 30773592)
1. DriverML: a machine learning algorithm for identifying driver genes in cancer sequencing studies. Han Y; Yang J; Qian X; Cheng WC; Liu SH; Hua X; Zhou L; Yang Y; Wu Q; Liu P; Lu Y Nucleic Acids Res; 2019 May; 47(8):e45. PubMed ID: 30773592 [TBL] [Abstract][Full Text] [Related]
2. Machine Learning Classification and Structure-Functional Analysis of Cancer Mutations Reveal Unique Dynamic and Network Signatures of Driver Sites in Oncogenes and Tumor Suppressor Genes. Agajanian S; Odeyemi O; Bischoff N; Ratra S; Verkhivker GM J Chem Inf Model; 2018 Oct; 58(10):2131-2150. PubMed ID: 30253099 [TBL] [Abstract][Full Text] [Related]
3. WITER: a powerful method for estimation of cancer-driver genes using a weighted iterative regression modelling background mutation counts. Jiang L; Zheng J; Kwan JSH; Dai S; Li C; Li MJ; Yu B; To KF; Sham PC; Zhu Y; Li M Nucleic Acids Res; 2019 Sep; 47(16):e96. PubMed ID: 31287869 [TBL] [Abstract][Full Text] [Related]
4. OncoVar: an integrated database and analysis platform for oncogenic driver variants in cancers. Wang T; Ruan S; Zhao X; Shi X; Teng H; Zhong J; You M; Xia K; Sun Z; Mao F Nucleic Acids Res; 2021 Jan; 49(D1):D1289-D1301. PubMed ID: 33179738 [TBL] [Abstract][Full Text] [Related]
5. LOTUS: A single- and multitask machine learning algorithm for the prediction of cancer driver genes. Collier O; Stoven V; Vert JP PLoS Comput Biol; 2019 Sep; 15(9):e1007381. PubMed ID: 31568528 [TBL] [Abstract][Full Text] [Related]
6. EPIMUTESTR: a nearest neighbor machine learning approach to predict cancer driver genes from the evolutionary action of coding variants. Parvandeh S; Donehower LA; Panagiotis K; Hsu TK; Asmussen JK; Lee K; Lichtarge O Nucleic Acids Res; 2022 Jul; 50(12):e70. PubMed ID: 35412634 [TBL] [Abstract][Full Text] [Related]
7. Uncovering driver genes in breast cancer through an innovative machine learning mutational analysis method. Taheri G; Habibi M Comput Biol Med; 2024 Mar; 171():108234. PubMed ID: 38430742 [TBL] [Abstract][Full Text] [Related]
8. Evaluating the evaluation of cancer driver genes. Tokheim CJ; Papadopoulos N; Kinzler KW; Vogelstein B; Karchin R Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14330-14335. PubMed ID: 27911828 [TBL] [Abstract][Full Text] [Related]
9. Assessing the validity of driver gene identification tools for targeted genome sequencing data. Rojas-Rodriguez F; Schmidt MK; Canisius S Bioinform Adv; 2024; 4(1):vbae073. PubMed ID: 38808071 [TBL] [Abstract][Full Text] [Related]
10. Comprehensive evaluation of computational methods for predicting cancer driver genes. Shi X; Teng H; Shi L; Bi W; Wei W; Mao F; Sun Z Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35037014 [TBL] [Abstract][Full Text] [Related]
11. Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance. Lewis JE; Kemp ML Nat Commun; 2021 May; 12(1):2700. PubMed ID: 33976213 [TBL] [Abstract][Full Text] [Related]
12. Prioritization of cancer driver gene with prize-collecting steiner tree by introducing an edge weighted strategy in the personalized gene interaction network. Zhang SW; Wang ZN; Li Y; Guo WF BMC Bioinformatics; 2022 Aug; 23(1):341. PubMed ID: 35974311 [TBL] [Abstract][Full Text] [Related]
13. Machine learning methods for prediction of cancer driver genes: a survey paper. Andrades R; Recamonde-Mendoza M Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35323900 [TBL] [Abstract][Full Text] [Related]
14. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework. Yang H; Wei Q; Zhong X; Yang H; Li B Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769 [TBL] [Abstract][Full Text] [Related]
15. Machine learning optimized DriverDetect software for high precision prediction of deleterious mutations in human cancers. Koh HYK; Lam UTF; Ban KH; Chen ES Sci Rep; 2024 Sep; 14(1):22618. PubMed ID: 39349509 [TBL] [Abstract][Full Text] [Related]
16. Identification of druggable cancer driver genes amplified across TCGA datasets. Chen Y; McGee J; Chen X; Doman TN; Gong X; Zhang Y; Hamm N; Ma X; Higgs RE; Bhagwat SV; Buchanan S; Peng SB; Staschke KA; Yadav V; Yue Y; Kouros-Mehr H PLoS One; 2014; 9(5):e98293. PubMed ID: 24874471 [TBL] [Abstract][Full Text] [Related]
17. Identification of outcome-related driver mutations in cancer using conditional co-occurrence distributions. Treviño V; Martínez-Ledesma E; Tamez-Peña J Sci Rep; 2017 Feb; 7():43350. PubMed ID: 28240231 [TBL] [Abstract][Full Text] [Related]
18. InDEP: an interpretable machine learning approach to predict cancer driver genes from multi-omics data. Yang H; Liu Y; Yang Y; Li D; Wang Z Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37649392 [TBL] [Abstract][Full Text] [Related]
19. Evaluating machine learning methodologies for identification of cancer driver genes. Malebary SJ; Khan YD Sci Rep; 2021 Jun; 11(1):12281. PubMed ID: 34112883 [TBL] [Abstract][Full Text] [Related]
20. Unsupervised detection of cancer driver mutations with parsimony-guided learning. Kumar RD; Swamidass SJ; Bose R Nat Genet; 2016 Oct; 48(10):1288-94. PubMed ID: 27618449 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]