These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 30773679)

  • 1. SPARKLING: variable-density k-space filling curves for accelerated T
    Lazarus C; Weiss P; Chauffert N; Mauconduit F; El Gueddari L; Destrieux C; Zemmoura I; Vignaud A; Ciuciu P
    Magn Reson Med; 2019 Jun; 81(6):3643-3661. PubMed ID: 30773679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D variable-density SPARKLING trajectories for high-resolution T2*-weighted magnetic resonance imaging.
    Lazarus C; Weiss P; El Gueddari L; Mauconduit F; Massire A; Ripart M; Vignaud A; Ciuciu P
    NMR Biomed; 2020 Sep; 33(9):e4349. PubMed ID: 32613699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing Full 3D SPARKLING Trajectories for High-Resolution Magnetic Resonance Imaging.
    Chaithya GR; Weiss P; Daval-Frerot G; Massire A; Vignaud A; Ciuciu P
    IEEE Trans Med Imaging; 2022 Aug; 41(8):2105-2117. PubMed ID: 35254981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving spreading projection algorithm for rapid k-space sampling trajectories through minimized off-resonance effects and gridding of low frequencies.
    Giliyar Radhakrishna C; Daval-Frérot G; Massire A; Vignaud A; Ciuciu P
    Magn Reson Med; 2023 Sep; 90(3):1069-1085. PubMed ID: 37213029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Variable Density and Data-Driven K-Space Undersampling for Compressed Sensing Magnetic Resonance Imaging.
    Zijlstra F; Viergever MA; Seevinck PR
    Invest Radiol; 2016 Jun; 51(6):410-9. PubMed ID: 26674209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compressed sensing MRI with variable density averaging (CS-VDA) outperforms full sampling at low SNR.
    Schoormans J; Strijkers GJ; Hansen AC; Nederveen AJ; Coolen BF
    Phys Med Biol; 2020 Feb; 65(4):045004. PubMed ID: 31851959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards a general framework for fast and feasible k-space trajectories for MRI based on projection methods.
    Sharma S; Coutino M; Chepuri SP; Leus G; Hari KVS
    Magn Reson Imaging; 2020 Oct; 72():122-134. PubMed ID: 32668272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trajectory analysis for field free line magnetic particle imaging.
    Top CB; Güngör A; Ilbey S; Güven HE
    Med Phys; 2019 Apr; 46(4):1592-1607. PubMed ID: 30695100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of sampling patterns for high-resolution compressed sensing MRI of porous materials: 'learning' from X-ray microcomputed tomography data.
    Karlsons K; DE Kort DW; Sederman AJ; Mantle MD; DE Jong H; Appel M; Gladden LF
    J Microsc; 2019 Nov; 276(2):63-81. PubMed ID: 31587277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An empirical study of the maximum degree of undersampling in compressed sensing for T
    Lazarus C; Weiss P; Vignaud A; Ciuciu P
    Magn Reson Imaging; 2018 Nov; 53():112-122. PubMed ID: 30036651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partial fourier shells trajectory for non-cartesian MRI.
    Tao S; Shu Y; Trzasko JD; Huston J; Bernstein MA
    Phys Med Biol; 2019 Feb; 64(4):04NT01. PubMed ID: 30625455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudo-Polar Fourier Transform-Based Compressed Sensing MRI.
    Yang Y; Liu F; Li M; Jin J; Weber E; Liu Q; Crozier S
    IEEE Trans Biomed Eng; 2017 Apr; 64(4):816-825. PubMed ID: 27305666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium magnetic resonance imaging using ultra-short echo time sequences with anisotropic resolution and uniform k-space sampling.
    Konstandin S; Krämer P; Günther M; Schad LR
    Magn Reson Imaging; 2015 Apr; 33(3):319-27. PubMed ID: 25527394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistically Segregated k-Space Sampling for Accelerating Multiple-Acquisition MRI.
    Senel LK; Kilic T; Gungor A; Kopanoglu E; Guven HE; Saritas EU; Koc A; Cukur T
    IEEE Trans Med Imaging; 2019 Jul; 38(7):1701-1714. PubMed ID: 30640604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-rank inversion reconstruction for through-plane accelerated radial MR fingerprinting applied to relaxometry at 0.35 T.
    Mickevicius NJ; Glide-Hurst CK
    Magn Reson Med; 2022 Aug; 88(2):840-848. PubMed ID: 35403235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compressed Sensing 3D-GRASE for faster High-Resolution MRI.
    Cristobal-Huerta A; Poot DHJ; Vogel MW; Krestin GP; Hernandez-Tamames JA
    Magn Reson Med; 2019 Sep; 82(3):984-999. PubMed ID: 31045280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of k-space trajectories for compressed sensing by Bayesian experimental design.
    Seeger M; Nickisch H; Pohmann R; Schölkopf B
    Magn Reson Med; 2010 Jan; 63(1):116-26. PubMed ID: 19859957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Undersampling patterns in k-space for compressed sensing MRI using two-dimensional Cartesian sampling.
    Kojima S; Shinohara H; Hashimoto T; Suzuki S
    Radiol Phys Technol; 2018 Sep; 11(3):303-319. PubMed ID: 30078080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous auto-calibration and gradient delays estimation (SAGE) in non-Cartesian parallel MRI using low-rank constraints.
    Jiang W; Larson PEZ; Lustig M
    Magn Reson Med; 2018 Nov; 80(5):2006-2016. PubMed ID: 29524244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning-based method for k-space trajectory design in MRI.
    Sharma S; Hari KVS; Leus G
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1464-1467. PubMed ID: 36086415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.