BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30773874)

  • 1. Low Conductive Electrodeposited Poly(2,5-dimethoxyaniline) as a Key Material in a Double Lateral Heterojunction, for Sub-ppm Ammonia Sensing in Humid Atmosphere.
    Mateos M; Tchangaï MD; Meunier-Prest R; Heintz O; Herbst F; Suisse JM; Bouvet M
    ACS Sens; 2019 Mar; 4(3):740-747. PubMed ID: 30773874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive Study of Poly(2,3,5,6-tetrafluoroaniline): From Electrosynthesis to Heterojunctions and Ammonia Sensing.
    Mateos M; Meunier-Prest R; Heintz O; Herbst F; Suisse JM; Bouvet M
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19974-19986. PubMed ID: 29737156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. π-Extended Porphyrin-Phthalocyanine Heterojunction Devices Exhibiting High Ammonia Sensitivity with a Remarkable Light Effect.
    Ganesh Moorthy S; Arvidson J; Meunier-Prest R; Wang H; Bouvet M
    ACS Sens; 2024 Feb; 9(2):883-894. PubMed ID: 38241640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ammonia and Humidity Sensing by Phthalocyanine-Corrole Complex Heterostructure Devices.
    Di Zazzo L; Ganesh Moorthy S; Meunier-Prest R; Lesniewska E; Di Natale C; Paolesse R; Bouvet M
    Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From the solution processing of hydrophilic molecules to polymer-phthalocyanine hybrid materials for ammonia sensing in high humidity atmospheres.
    Gaudillat P; Jurin F; Lakard B; Buron C; Suisse JM; Bouvet M
    Sensors (Basel); 2014 Jul; 14(8):13476-95. PubMed ID: 25061841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elaboration of ammonia gas sensors based on electrodeposited polypyrrole--cobalt phthalocyanine hybrid films.
    Patois T; Sanchez JB; Berger F; Fievet P; Segut O; Moutarlier V; Bouvet M; Lakard B
    Talanta; 2013 Dec; 117():45-54. PubMed ID: 24209308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct measurement of ammonia in simulated human breath using an inkjet-printed polyaniline nanoparticle sensor.
    Hibbard T; Crowley K; Killard AJ
    Anal Chim Acta; 2013 May; 779():56-63. PubMed ID: 23663672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyaniline Anchored MWCNTs on Fabric for High Performance Wearable Ammonia Sensor.
    Maity D; Kumar RTR
    ACS Sens; 2018 Sep; 3(9):1822-1830. PubMed ID: 30168710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ammonia vapor sensing properties of polyaniline-titanium(IV)phosphate cation exchange nanocomposite.
    Khan AA; Baig U; Khalid M
    J Hazard Mater; 2011 Feb; 186(2-3):2037-42. PubMed ID: 21276658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulating the Electrical Properties of Organic Heterojunction Devices Based On Phthalocyanines for Ambipolar Sensors.
    Ouedraogo S; Meunier-Prest R; Kumar A; Bayo-Bangoura M; Bouvet M
    ACS Sens; 2020 Jun; 5(6):1849-1857. PubMed ID: 32476416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton-Conductive Gas Sensor: a New Way to Realize Highly Selective Ammonia Detection for Analysis of Exhaled Human Breath.
    Zhao H; Liu L; Lin X; Dai J; Liu S; Fei T; Zhang T
    ACS Sens; 2020 Feb; 5(2):346-352. PubMed ID: 31793289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discourse on the utilization of polyaniline coatings for surface plasmon resonance sensing of ammonia vapor.
    Menegazzo N; Herbert B; Banerji S; Booksh KS
    Talanta; 2011 Sep; 85(3):1369-75. PubMed ID: 21807197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wearable Gas Sensor Based on Reticular Antimony-Doped SnO
    Li Y; Zhang Y; Zhou Y; Zhao L; Yan X; Liu F; Lu G; Sun P
    ACS Sens; 2023 Nov; 8(11):4132-4142. PubMed ID: 37938135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of carbon nanotube dispersion on CO gas sensing characteristics of polyaniline gas sensor.
    Wanna Y; Srisukhumbowornchai N; Tuantranont A; Wisitsoraat A; Thavarungkul N; Singjai P
    J Nanosci Nanotechnol; 2006 Dec; 6(12):3893-6. PubMed ID: 17256348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of ammonia sensors by using conductive polymer/hydroxyapatite composite materials.
    Huixia L; Yong L; Lanlan L; Yanni T; Qing Z; Kun L
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():438-444. PubMed ID: 26652394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Point of care monitoring of hemodialysis patients with a breath ammonia measurement device based on printed polyaniline nanoparticle sensors.
    Hibbard T; Crowley K; Kelly F; Ward F; Holian J; Watson A; Killard AJ
    Anal Chem; 2013 Dec; 85(24):12158-65. PubMed ID: 24299143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and characterization of polyaniline/PVA humidity microsensors.
    Yang MZ; Dai CL; Lin WY
    Sensors (Basel); 2011; 11(8):8143-51. PubMed ID: 22164067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A miniature chemiresistor sensor for carbon dioxide.
    Srinives S; Sarkar T; Hernandez R; Mulchandani A
    Anal Chim Acta; 2015 May; 874():54-8. PubMed ID: 25910446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible, robust, and high-performance gas sensors based on lignocellulosic nanofibrils.
    Tanguy NR; Khorsand Kazemi K; Hong J; Cheung KC; Mohammadi S; Gnanasekar P; Nair SS; Zarifi MH; Yan N
    Carbohydr Polym; 2022 Feb; 278():118920. PubMed ID: 34973739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multilayer films of layered double hydroxide/polyaniline and their ammonia sensing behavior.
    Xu DM; Guan MY; Xu QH; Guo Y
    J Hazard Mater; 2013 Nov; 262():64-70. PubMed ID: 24012961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.