These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

486 related articles for article (PubMed ID: 30773875)

  • 41. Electrochemical CO2 Reduction to Hydrocarbons on a Heterogeneous Molecular Cu Catalyst in Aqueous Solution.
    Weng Z; Jiang J; Wu Y; Wu Z; Guo X; Materna KL; Liu W; Batista VS; Brudvig GW; Wang H
    J Am Chem Soc; 2016 Jul; 138(26):8076-9. PubMed ID: 27310487
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ultrastable Cu-Based Dual-Channel Heterowire for the Switchable Electro-/Photocatalytic Reduction of CO
    Li B; Liu X; Lei B; Luo H; Liu X; Liu H; Gu Q; Ma JG; Cheng P
    Adv Sci (Weinh); 2023 Sep; 10(26):e2302881. PubMed ID: 37394727
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Facet- and structure-dependent catalytic activity of cuprous oxide/polypyrrole particles towards the efficient reduction of carbon dioxide to methanol.
    Periasamy AP; Ravindranath R; Senthil Kumar SM; Wu WP; Jian TR; Chang HT
    Nanoscale; 2018 Jul; 10(25):11869-11880. PubMed ID: 29897084
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metal-Organic Framework Coating Enhances the Performance of Cu
    Deng X; Li R; Wu S; Wang L; Hu J; Ma J; Jiang W; Zhang N; Zheng X; Gao C; Wang L; Zhang Q; Zhu J; Xiong Y
    J Am Chem Soc; 2019 Jul; 141(27):10924-10929. PubMed ID: 31200598
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ni, Co, Zn, and Cu metal-organic framework-based nanomaterials for electrochemical reduction of CO
    Do HH; Truong HB
    Beilstein J Nanotechnol; 2023; 14():904-911. PubMed ID: 37674542
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular Stabilization of Sub-Nanometer Cu Clusters for Selective CO
    Zhang H; Yang Y; Liang Y; Li J; Zhang A; Zheng H; Geng Z; Li F; Zeng J
    ChemSusChem; 2022 Jan; 15(1):e202102010. PubMed ID: 34714607
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Granular protruded irregular Cu
    Jian Z; Yu J; Madatta IJ; Liu Y; Ding J
    J Colloid Interface Sci; 2024 Jan; 653(Pt B):1415-1422. PubMed ID: 37801851
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anionic Metal-Organic Framework Derived Cu Catalyst for Selective CO
    Wen CF; Yang S; He JJ; Niu Q; Liu PF; Yang HG
    Small; 2024 Nov; 20(46):e2405051. PubMed ID: 39092657
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structure-Sensitive CO
    Li Y; Cui F; Ross MB; Kim D; Sun Y; Yang P
    Nano Lett; 2017 Feb; 17(2):1312-1317. PubMed ID: 28094953
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Construction of coherent interface between Cu
    Yan X; Wang S; Chen Z; Zhou Y; Huang H; Wu J; He T; Yang H; Yan L; Bao K; Menezes PW; Kang Z
    J Colloid Interface Sci; 2024 Nov; 673():60-69. PubMed ID: 38875798
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Toward High-Performance CO
    Chen R; Cheng L; Liu J; Wang Y; Ge W; Xiao C; Jiang H; Li Y; Li C
    Small; 2022 May; 18(18):e2200720. PubMed ID: 35373471
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Construction of continuous flow catalytic reactor-HPLC system with ultrahigh catalytic activity using 2D nanoflower MOF-derived Cu
    Li Y; Zheng S; Hou S; Chen T; Bai Y; Zhang M; Zhou D; Yang S; Xu H; Zhang G
    J Hazard Mater; 2023 Oct; 460():132376. PubMed ID: 37690202
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Greening the Processes of Metal-Organic Framework Synthesis and their Use in Sustainable Catalysis.
    Chen J; Shen K; Li Y
    ChemSusChem; 2017 Aug; 10(16):3165-3187. PubMed ID: 28589626
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Density functional theory study of carbon dioxide electrochemical reduction on the Fe(100) surface.
    Bernstein NJ; Akhade SA; Janik MJ
    Phys Chem Chem Phys; 2014 Jul; 16(27):13708-17. PubMed ID: 24722651
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oxygen Functionalized Copper Nanoparticles for Solar-Driven Conversion of Carbon Dioxide to Methane.
    Esmaeilirad M; Kondori A; Song B; Ruiz Belmonte A; Wei J; Kucuk K; Khanvilkar SM; Efimoff E; Chen W; Segre CU; Shahbazian-Yassar R; Asadi M
    ACS Nano; 2020 Feb; 14(2):2099-2108. PubMed ID: 31971779
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrocatalytic Production of C3-C4 Compounds by Conversion of CO2 on a Chloride-Induced Bi-Phasic Cu2O-Cu Catalyst.
    Lee S; Kim D; Lee J
    Angew Chem Int Ed Engl; 2015 Dec; 54(49):14701-5. PubMed ID: 26473324
    [TBL] [Abstract][Full Text] [Related]  

  • 57. New aspects of C2 selectivity in electrochemical CO
    Shah AH; Wang Y; Hussain S; Akbar MB; Woldu AR; Zhang X; He T
    Phys Chem Chem Phys; 2020 Jan; 22(4):2046-2053. PubMed ID: 31904072
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Highly Efficient CO
    Guo W; Liu S; Tan X; Wu R; Yan X; Chen C; Zhu Q; Zheng L; Ma J; Zhang J; Huang Y; Sun X; Han B
    Angew Chem Int Ed Engl; 2021 Sep; 60(40):21979-21987. PubMed ID: 34346160
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Construction synergetic adsorption and activation surface via confined Cu/Cu
    Li BH; Zhang KH; Wang XJ; Li YP; Liu X; Han BH; Li FT
    J Colloid Interface Sci; 2024 Apr; 660():961-973. PubMed ID: 38281477
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of Charge on Carbon Support on the Catalytic Activity of Cu
    Wang Y; Cheng L; Ge W; Zhu Y; Zhang J; Chen R; Zhang L; Li Y; Li C
    ACS Appl Mater Interfaces; 2023 May; 15(19):23306-23315. PubMed ID: 37132505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.