These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 30774017)

  • 1. Integrative and deconvolution omics approaches to uncover the Agrobacterium tumefaciens lifestyle in plant tumors.
    Gonzalez-Mula A; Torres M; Faure D
    Plant Signal Behav; 2019; 14(3):e1581562. PubMed ID: 30774017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of Agrobacterium tumefaciens C58 attachment to Arabidopsis thaliana roots.
    Petrovicheva A; Joyner J; Muth TR
    FEMS Microbiol Lett; 2017 Oct; 364(18):. PubMed ID: 28922840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The biotroph Agrobacterium tumefaciens thrives in tumors by exploiting a wide spectrum of plant host metabolites.
    Gonzalez-Mula A; Lachat J; Mathias L; Naquin D; Lamouche F; Mergaert P; Faure D
    New Phytol; 2019 Apr; 222(1):455-467. PubMed ID: 30447163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aboveground insect infestation attenuates belowground Agrobacterium-mediated genetic transformation.
    Song GC; Lee S; Hong J; Choi HK; Hong GH; Bae DW; Mysore KS; Park YS; Ryu CM
    New Phytol; 2015 Jul; 207(1):148-158. PubMed ID: 25676198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stacking resistance to crown gall and nematodes in walnut rootstocks.
    Walawage SL; Britton MT; Leslie CA; Uratsu SL; Li Y; Dandekar AM
    BMC Genomics; 2013 Oct; 14():668. PubMed ID: 24083348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lifestyle of the biotroph Agrobacterium tumefaciens in the ecological niche constructed on its host plant.
    González-Mula A; Lang J; Grandclément C; Naquin D; Ahmar M; Soulère L; Queneau Y; Dessaux Y; Faure D
    New Phytol; 2018 Jul; 219(1):350-362. PubMed ID: 29701262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of the Arabidopsis histone H2A-1 gene correlates with susceptibility to Agrobacterium transformation.
    Yi H; Mysore KS; Gelvin SB
    Plant J; 2002 Nov; 32(3):285-98. PubMed ID: 12410808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agrobacterium tumefaciens fitness genes involved in the colonization of plant tumors and roots.
    Torres M; Jiquel A; Jeanne E; Naquin D; Dessaux Y; Faure D
    New Phytol; 2022 Jan; 233(2):905-918. PubMed ID: 34655498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into the Bacterial Endophytic Communities of Peach Cultivars Related to Crown Gall Disease Resistance.
    Li Q; Guo R; Li Y; Hartman WH; Li S; Zhang Z; Tringe SG; Wang H
    Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Tzs protein and exogenous cytokinin affect virulence gene expression and bacterial growth of Agrobacterium tumefaciens.
    Hwang HH; Yang FJ; Cheng TF; Chen YC; Lee YL; Tsai YL; Lai EM
    Phytopathology; 2013 Sep; 103(9):888-99. PubMed ID: 23593941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Factors affecting transformation of Agrobacterium tumefaciens and their application on cereals].
    Kong Y; Zhou G; Wang G; Wang Y
    Ying Yong Sheng Tai Xue Bao; 2000 Oct; 11(5):791-4. PubMed ID: 11767545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Ti Plasmid, Driver of
    Hooykaas PJJ
    Phytopathology; 2023 Apr; 113(4):594-604. PubMed ID: 37098885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotypic analyses of Agrobacterium.
    Morton ER; Fuqua C
    Curr Protoc Microbiol; 2012 May; Chapter 3():Unit 3D.3.. PubMed ID: 22549164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resistance to crown gall disease in transgenic grapevine rootstocks containing truncated virE2 of Agrobacterium.
    Krastanova SV; Balaji V; Holden MR; Sekiya M; Xue B; Momol EA; Burr TJ
    Transgenic Res; 2010 Dec; 19(6):949-58. PubMed ID: 20182792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of a Transposon Mutant Library in the Pathogen Agrobacterium tumefaciens C58 and Identification of Genes Involved in Gall Niche Exploitation and Colonization.
    Torres M; Gonzalez-Mula A; Naquin D; Faure D
    Methods Mol Biol; 2023; 2605():209-226. PubMed ID: 36520396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of Agrobacterium tumefaciens T-cyt gene expression in leaves of transgenic potato (Solanum tuberosum L. cv. Désirée) is strongly influenced by plant culture conditions.
    Dymock D; Risiott R; de Pater S; Lancaster J; Tillson P; Ooms G
    Plant Mol Biol; 1991 Oct; 17(4):711-25. PubMed ID: 1912495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections.
    Dunoyer P; Himber C; Voinnet O
    Nat Genet; 2006 Feb; 38(2):258-63. PubMed ID: 16429161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agrobacterium tumefaciens tumor morphology root plastid localization and preferential usage of hydroxylated prenyl donor is important for efficient gall formation.
    Ueda N; Kojima M; Suzuki K; Sakakibara H
    Plant Physiol; 2012 Jul; 159(3):1064-72. PubMed ID: 22589470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silencing of Agrobacterium tumefaciens oncogenes ipt and iaaM induces resistance to crown gall disease in plum but not in apricot.
    Alburquerque N; Faize L; Burgos L
    Pest Manag Sci; 2017 Oct; 73(10):2163-2173. PubMed ID: 28449201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agrobacterium-produced and exogenous cytokinin-modulated Agrobacterium-mediated plant transformation.
    Hwang HH; Wang MH; Lee YL; Tsai YL; Li YH; Yang FJ; Liao YC; Lin SK; Lai EM
    Mol Plant Pathol; 2010 Sep; 11(5):677-90. PubMed ID: 20696005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.