These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 30774192)

  • 1. Coreflood Study of Effect of Surfactant Concentration on Foam Generation in Porous Media.
    Yu G; Rossen WR; Vincent-Bonnieu S
    Ind Eng Chem Res; 2019 Jan; 58(1):420-427. PubMed ID: 30774192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pore-network study of the mechanisms of foam generation in porous media.
    Chen M; Yortsos YC; Rossen WR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036304. PubMed ID: 16605648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Foam formation during drainage of a surfactant solution in a microfluidic porous medium model.
    Lima N; Parsa S; Paciornik S; Carvalho MS
    Sci Rep; 2023 Dec; 13(1):21802. PubMed ID: 38071214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Study of Hysteresis behavior of Foam Generation in Porous Media.
    Kahrobaei S; Vincent-Bonnieu S; Farajzadeh R
    Sci Rep; 2017 Aug; 7(1):8986. PubMed ID: 28827586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Foam flow in a model porous medium: I. The effect of foam coarsening.
    Jones SA; Getrouw N; Vincent-Bonnieu S
    Soft Matter; 2018 May; 14(18):3490-3496. PubMed ID: 29392252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of Chemical-Foam Design as a Novel Approach toward Immiscible Foam Flooding for Enhanced Oil Recovery.
    Hosseini-Nasab SM; Zitha PLJ
    Energy Fuels; 2017 Oct; 31(10):10525-10534. PubMed ID: 29093612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of gas type on foam film permeability and its implications for foam flow in porous media.
    Farajzadeh R; Muruganathan RM; Rossen WR; Krastev R
    Adv Colloid Interface Sci; 2011 Oct; 168(1-2):71-8. PubMed ID: 21496785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Destabilization, Propagation, and Generation of Surfactant-Stabilized Foam during Crude Oil Displacement in Heterogeneous Model Porous Media.
    Xiao S; Zeng Y; Vavra ED; He P; Puerto M; Hirasaki GJ; Biswal SL
    Langmuir; 2018 Jan; 34(3):739-749. PubMed ID: 29045144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Foam flow in a model porous medium: II. The effect of trapped gas.
    Jones SA; Getrouw N; Vincent-Bonnieu S
    Soft Matter; 2018 May; 14(18):3497-3503. PubMed ID: 29707727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imidazolium based ionic liquid stabilized foams for conformance control: bulk and porous scale investigation.
    Sakthivel S; Babu Salin R
    RSC Adv; 2021 Sep; 11(47):29711-29727. PubMed ID: 35479573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of foam flow in a 3D printed porous medium in the presence of oil.
    Osei-Bonsu K; Grassia P; Shokri N
    J Colloid Interface Sci; 2017 Mar; 490():850-858. PubMed ID: 28002773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Foam on Liquid Phase Mobility in Porous Media.
    Eftekhari AA; Farajzadeh R
    Sci Rep; 2017 Mar; 7():43870. PubMed ID: 28262795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of Local Equilibrium Model Parameters for Simulation of the Laboratory Foam-Enhanced Oil Recovery Process Using a Commercial Reservoir Simulator.
    Ding L; Cui L; Jouenne S; Gharbi O; Pal M; Bertin H; Rahman MA; Romero C; Guérillot D
    ACS Omega; 2020 Sep; 5(36):23437-23449. PubMed ID: 32954197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Foams and antifoams.
    Karakashev SI; Grozdanova MV
    Adv Colloid Interface Sci; 2012; 176-177():1-17. PubMed ID: 22560722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental study of foam propagation and stability in highly permeable porous media under lateral water flow: Diverting groundwater for application to soil remediation.
    Davarzani H; Aranda R; Colombano S; Laurent F; Bertin H
    J Contam Hydrol; 2021 Dec; 243():103917. PubMed ID: 34758436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of CO
    Wu M; Li B; Ruan L; Zhang C; Tang Y; Li Z
    Polymers (Basel); 2024 Sep; 16(19):. PubMed ID: 39408438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of nanoparticle aggregation on surfactant foam stability.
    AlYousef ZA; Almobarky MA; Schechter DS
    J Colloid Interface Sci; 2018 Feb; 511():365-373. PubMed ID: 29031155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pore- and Core-Scale Insights of Nanoparticle-Stabilized Foam for CO
    Alcorn ZP; Føyen T; Gauteplass J; Benali B; Soyke A; Fernø M
    Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 32992912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Behaviors and Mechanisms of Air-Foam Flooding at High Pressure and Reservoir Temperature via Microfluidic Experiments.
    Li D; Xin G; Ren S
    ACS Omega; 2022 Oct; 7(41):36503-36509. PubMed ID: 36278066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.