These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 30775248)
1. Potential impact of combined inhibition of 3α-oxidoreductases and 5α-reductases on prostate cancer. Fiandalo MV; Gewirth DT; Mohler JL Asian J Urol; 2019 Jan; 6(1):50-56. PubMed ID: 30775248 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of dihydrotestosterone synthesis in prostate cancer by combined frontdoor and backdoor pathway blockade. Fiandalo MV; Stocking JJ; Pop EA; Wilton JH; Mantione KM; Li Y; Attwood KM; Azabdaftari G; Wu Y; Watt DS; Wilson EM; Mohler JL Oncotarget; 2018 Feb; 9(13):11227-11242. PubMed ID: 29541409 [TBL] [Abstract][Full Text] [Related]
3. Transition from androgenic to neurosteroidal action of 5α-androstane-3α, 17β-diol through the type A γ-aminobutyric acid receptor in prostate cancer progression. Xia D; Lai DV; Wu W; Webb ZD; Yang Q; Zhao L; Yu Z; Thorpe JE; Disch BC; Ihnat MA; Jayaraman M; Dhanasekaran DN; Stratton KL; Cookson MS; Fung KM; Lin HK J Steroid Biochem Mol Biol; 2018 Apr; 178():89-98. PubMed ID: 29155210 [TBL] [Abstract][Full Text] [Related]
4. Potential prostate cancer drug target: bioactivation of androstanediol by conversion to dihydrotestosterone. Mohler JL; Titus MA; Wilson EM Clin Cancer Res; 2011 Sep; 17(18):5844-9. PubMed ID: 21705451 [TBL] [Abstract][Full Text] [Related]
5. Activation of the androgen receptor by intratumoral bioconversion of androstanediol to dihydrotestosterone in prostate cancer. Mohler JL; Titus MA; Bai S; Kennerley BJ; Lih FB; Tomer KB; Wilson EM Cancer Res; 2011 Feb; 71(4):1486-96. PubMed ID: 21303972 [TBL] [Abstract][Full Text] [Related]
6. Next-generation steroidogenesis inhibitors, dutasteride and abiraterone, attenuate but still do not eliminate androgen biosynthesis in 22RV1 cells in vitro. Pham S; Deb S; Ming DS; Adomat H; Hosseini-Beheshti E; Zoubeidi A; Gleave M; Guns ES J Steroid Biochem Mol Biol; 2014 Oct; 144 Pt B():436-44. PubMed ID: 25201454 [TBL] [Abstract][Full Text] [Related]
7. Androgen receptors in hormone-dependent and castration-resistant prostate cancer. Shafi AA; Yen AE; Weigel NL Pharmacol Ther; 2013 Dec; 140(3):223-38. PubMed ID: 23859952 [TBL] [Abstract][Full Text] [Related]
8. Human type 3 3alpha-hydroxysteroid dehydrogenase (aldo-keto reductase 1C2) and androgen metabolism in prostate cells. Rizner TL; Lin HK; Peehl DM; Steckelbroeck S; Bauman DR; Penning TM Endocrinology; 2003 Jul; 144(7):2922-32. PubMed ID: 12810547 [TBL] [Abstract][Full Text] [Related]
9. The 5α-androstanedione pathway to dihydrotestosterone in castration-resistant prostate cancer. Sharifi N J Investig Med; 2012 Feb; 60(2):504-7. PubMed ID: 22064602 [TBL] [Abstract][Full Text] [Related]
10. 5alpha-androstane-3alpha,17beta-diol supports human prostate cancer cell survival and proliferation through androgen receptor-independent signaling pathways: implication of androgen-independent prostate cancer progression. Yang Q; Titus MA; Fung KM; Lin HK J Cell Biochem; 2008 Aug; 104(5):1612-24. PubMed ID: 18320593 [TBL] [Abstract][Full Text] [Related]
11. Role of human type 3 3alpha-hydroxysteroid dehydrogenase (AKR1C2) in androgen metabolism of prostate cancer cells. Rizner TL; Lin HK; Penning TM Chem Biol Interact; 2003 Feb; 143-144():401-9. PubMed ID: 12604227 [TBL] [Abstract][Full Text] [Related]
12. Castration induces up-regulation of intratumoral androgen biosynthesis and androgen receptor expression in an orthotopic VCaP human prostate cancer xenograft model. Knuuttila M; Yatkin E; Kallio J; Savolainen S; Laajala TD; Aittokallio T; Oksala R; Häkkinen M; Keski-Rahkonen P; Auriola S; Poutanen M; Mäkelä S Am J Pathol; 2014 Aug; 184(8):2163-73. PubMed ID: 24949550 [TBL] [Abstract][Full Text] [Related]
13. Androgen inactivation and steroid-converting enzyme expression in abdominal adipose tissue in men. Blouin K; Richard C; Brochu G; Hould FS; Lebel S; Marceau S; Biron S; Luu-The V; Tchernof A J Endocrinol; 2006 Dec; 191(3):637-49. PubMed ID: 17170221 [TBL] [Abstract][Full Text] [Related]
14. Targeting androgen receptor versus targeting androgens to suppress castration resistant prostate cancer. Guo C; Yeh S; Niu Y; Li G; Zheng J; Li L; Chang C Cancer Lett; 2017 Jul; 397():133-143. PubMed ID: 28323036 [TBL] [Abstract][Full Text] [Related]
15. The ADAM9/UBN2/AKR1C3 axis promotes resistance to androgen-deprivation in prostate cancer. Le TT; Hsieh CL; Lin IH; Chu CY; Do AD; Chen SH; Shigemura K; Kitagawa K; Fujisawa M; Liu MC; Chen KC; Sung SY Am J Cancer Res; 2022; 12(1):176-197. PubMed ID: 35141012 [TBL] [Abstract][Full Text] [Related]
16. New frontiers in androgen biosynthesis and metabolism. Penning TM Curr Opin Endocrinol Diabetes Obes; 2010 Jun; 17(3):233-9. PubMed ID: 20186052 [TBL] [Abstract][Full Text] [Related]
17. The 11β-hydroxyandrostenedione pathway and C11-oxy C du Toit T; Swart AC J Steroid Biochem Mol Biol; 2020 Feb; 196():105497. PubMed ID: 31626910 [TBL] [Abstract][Full Text] [Related]
18. Effect of finasteride on serum levels of androstenedione, testosterone and their 5α-reduced metabolites in men at risk for prostate cancer. Stanczyk FZ; Azen CG; Pike MC J Steroid Biochem Mol Biol; 2013 Nov; 138():10-6. PubMed ID: 23474436 [TBL] [Abstract][Full Text] [Related]
20. Human 3alpha-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo-keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. Penning TM; Burczynski ME; Jez JM; Hung CF; Lin HK; Ma H; Moore M; Palackal N; Ratnam K Biochem J; 2000 Oct; 351(Pt 1):67-77. PubMed ID: 10998348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]