These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 30775756)

  • 1. Using nanotubes to study the phonon spectrum of two-dimensional materials.
    Carrete J; Ngoc Tuoc V; Madsen GKH
    Phys Chem Chem Phys; 2019 Feb; 21(9):5215-5223. PubMed ID: 30775756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infrared and Raman active vibrational modes in MoS
    Evarestov RA; Bandura AV
    J Comput Chem; 2018 Oct; 39(26):2163-2172. PubMed ID: 30318757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phonon spectra, electronic, and thermodynamic properties of WS
    Evarestov RA; Bandura AV; Porsev VV; Kovalenko AV
    J Comput Chem; 2017 Nov; 38(30):2581-2593. PubMed ID: 28833274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-Principles Calculations of Phonons and Thermodynamic Properties of Zr(Hf)S
    Domnin AV; Bandura AV; Evarestov RA
    J Comput Chem; 2020 Mar; 41(8):759-768. PubMed ID: 31828832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The vibration properties of the (n,0) boron nitride nanotubes from ab initio quantum chemical simulations.
    Erba A; Ferrabone M; Baima J; Orlando R; Rérat M; Dovesi R
    J Chem Phys; 2013 Feb; 138(5):054906. PubMed ID: 23406148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orbitally driven low thermal conductivity of monolayer gallium nitride (GaN) with planar honeycomb structure: a comparative study.
    Qin Z; Qin G; Zuo X; Xiong Z; Hu M
    Nanoscale; 2017 Mar; 9(12):4295-4309. PubMed ID: 28295111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Family behaviour of Raman-active phonon frequencies of single-wall nanotubes of C, BN and BC3.
    Wang H; Cao X; Feng M; Wang Y; Jin Q; Ding D; Lan G
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jan; 71(5):1932-7. PubMed ID: 18838291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single mode phonon energy transmission in functionalized carbon nanotubes.
    Lee J; Varshney V; Roy AK; Farmer BL
    J Chem Phys; 2011 Sep; 135(10):104109. PubMed ID: 21932878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic cavities in 2D heterostructures.
    Zalalutdinov MK; Robinson JT; Fonseca JJ; LaGasse SW; Pandey T; Lindsay LR; Reinecke TL; Photiadis DM; Culbertson JC; Cress CD; Houston BH
    Nat Commun; 2021 Jun; 12(1):3267. PubMed ID: 34075055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The calculations of phonon dispersion relations for single-wall carbon armchair and zigzag nanotubes.
    Wang Y; Zhang B; Jin Q; Li B; Ding D; Cao X
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(5):1149-52. PubMed ID: 17329162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First-principles-based calculations of vibrational normal modes in polyatomic materials with translational symmetry: application to PETN molecular crystal.
    Velizhanin KA; Kilina S; Sewell TD; Piryatinski A
    J Phys Chem B; 2008 Oct; 112(42):13252-7. PubMed ID: 18821785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc oxide nanotubes: an ab initio investigation of their structural, vibrational, elastic, and dielectric properties.
    Lacivita V; Erba A; Noël Y; Orlando R; D'Arco P; Dovesi R
    J Chem Phys; 2013 Jun; 138(21):214706. PubMed ID: 23758394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lattice thermal conductivity of borophene from first principle calculation.
    Xiao H; Cao W; Ouyang T; Guo S; He C; Zhong J
    Sci Rep; 2017 Apr; 7():45986. PubMed ID: 28374853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping vibrational surface and bulk modes in a single nanocube.
    Lagos MJ; Trügler A; Hohenester U; Batson PE
    Nature; 2017 Mar; 543(7646):529-532. PubMed ID: 28332537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-dependent nonlinear phonon shifts in a supported MoS2 monolayer.
    Taube A; Judek J; Jastrzębski C; Duzynska A; Świtkowski K; Zdrojek M
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):8959-63. PubMed ID: 24897497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-principles study of thermal transport in nitrogenated holey graphene.
    Ouyang T; Xiao H; Tang C; Zhang X; Hu M; Zhong J
    Nanotechnology; 2017 Jan; 28(4):045709. PubMed ID: 27997371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal Conductance of the 2D MoS
    Liu Y; Ong ZY; Wu J; Zhao Y; Watanabe K; Taniguchi T; Chi D; Zhang G; Thong JT; Qiu CW; Hippalgaonkar K
    Sci Rep; 2017 Mar; 7():43886. PubMed ID: 28262778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of elastic wave dispersion relations to estimate thermal properties of nanoscale wires and tubes of varying wall thickness and diameter.
    Bifano MF; Kaul PB; Prakash V
    Nanotechnology; 2010 Jun; 21(23):235704. PubMed ID: 20472943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phonon bandgap engineering of strained monolayer MoS₂.
    Jiang JW
    Nanoscale; 2014 Jul; 6(14):8326-33. PubMed ID: 24932612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-principles study on structural, thermal, mechanical and dynamic stability of T'-MoS
    Liu YC; Wang V; Xia MG; Zhang SL
    J Phys Condens Matter; 2017 Mar; 29(9):095702. PubMed ID: 28129207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.