BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 30776090)

  • 1. GABA is a modulator, rather than a classical transmitter, in the medial nucleus of the trapezoid body-lateral superior olive sound localization circuit.
    Fischer AU; Müller NIC; Deller T; Del Turco D; Fisch JO; Griesemer D; Kattler K; Maraslioglu A; Roemer V; Xu-Friedman MA; Walter J; Friauf E
    J Physiol; 2019 Apr; 597(8):2269-2295. PubMed ID: 30776090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A developmental shift from GABAergic to glycinergic transmission in the central auditory system.
    Kotak VC; Korada S; Schwartz IR; Sanes DH
    J Neurosci; 1998 Jun; 18(12):4646-55. PubMed ID: 9614239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An inhibitory glycinergic projection from the cochlear nucleus to the lateral superior olive.
    Weingarten DJ; Sebastian E; Winkelhoff J; Patschull-Keiner N; Fischer AU; Wadle SL; Friauf E; Hirtz JJ
    Front Neural Circuits; 2023; 17():1307283. PubMed ID: 38107610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presynaptic GABAA receptors facilitate GABAergic transmission to dopaminergic neurons in the ventral tegmental area of young rats.
    Xiao C; Zhou C; Li K; Ye JH
    J Physiol; 2007 May; 580(Pt.3):731-43. PubMed ID: 17303643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and Functional Development of Inhibitory Connections from the Medial Nucleus of the Trapezoid Body to the Superior Paraolivary Nucleus.
    Lee J; Clause A; Kandler K
    J Neurosci; 2023 Nov; 43(46):7766-7779. PubMed ID: 37734946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A phospho-deficient α3 glycine receptor mutation alters synaptic glycine and GABA release in mouse spinal dorsal horn neurons.
    Werynska K; Neumann E; Cramer T; Ganley RP; Gingras J; Zeilhofer HU
    J Physiol; 2023 Sep; 601(18):4121-4133. PubMed ID: 37598301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory projections from the ventral nucleus of the trapezoid body to the medial nucleus of the trapezoid body in the mouse.
    Albrecht O; Dondzillo A; Mayer F; Thompson JA; Klug A
    Front Neural Circuits; 2014; 8():83. PubMed ID: 25120436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Developmental Switch in Cholinergic Mechanisms of Modulation in the Medial Nucleus of the Trapezoid Body.
    Weimann SR; Zhang C; Burger RM
    J Neurosci; 2024 Feb; 44(8):. PubMed ID: 38383485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity-dependent formation of a vesicular inhibitory amino acid transporter gradient in the superior olivary complex of NMRI mice.
    Ebbers L; Weber M; Nothwang HG
    BMC Neurosci; 2017 Oct; 18(1):75. PubMed ID: 29073893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurotransmitters and Receptors Changes in Medial Nucleus of the Trapezoid Body (MNTB) of Early-Developmental Rats with Single-Side Deafness.
    Dai J; Liu J; Zhou M; Wang W; Xu ZD; Wang N
    Med Sci Monit; 2018 Jan; 24():397-404. PubMed ID: 29352772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extrasynaptic δGABAA receptors mediate resistance to migraine-like phenotype in rats.
    Alpay B; Cimen B; Akaydin E; Onat F; Bolay H; Sara Y
    J Headache Pain; 2024 May; 25(1):75. PubMed ID: 38724972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prefrontal GABA
    Pan HQ; Liu XX; He Y; Zhou J; Liao CZ; You WJ; Jiang SY; Qin X; Chen WB; Fei EK; Zhang WH; Pan BX
    J Neurosci; 2022 Jul; 42(29):5755-5770. PubMed ID: 35705488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perinatal high-fat diet alters development of GABA
    Clyburn C; Howe CA; Arnold AC; Lang CH; Travagli RA; Browning KN
    Am J Physiol Gastrointest Liver Physiol; 2019 Jul; 317(1):G40-G50. PubMed ID: 31042399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extrasynaptic glycine receptors of rodent dorsal raphe serotonergic neurons: a sensitive target for ethanol.
    Maguire EP; Mitchell EA; Greig SJ; Corteen N; Balfour DJ; Swinny JD; Lambert JJ; Belelli D
    Neuropsychopharmacology; 2014 Apr; 39(5):1232-44. PubMed ID: 24264816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Species-Specific Adaptation for Ongoing High-Frequency Action Potential Generation in MNTB Neurons.
    Kladisios N; Wicke KD; Pätz-Warncke C; Felmy F
    J Neurosci; 2023 Apr; 43(15):2714-2729. PubMed ID: 36898837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing GABAergic Tonic Inhibition Reduces Seizure-Like Activity in the Neonatal Mouse Hippocampus and Neocortex.
    Liddiard GT; Suryavanshi PS; Glykys J
    J Neurosci; 2024 Feb; 44(7):. PubMed ID: 38176909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GABA
    Javadova A; Felmy F
    Eur J Neurosci; 2024 Mar; 59(5):966-981. PubMed ID: 38180306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shift from depolarizing to hyperpolarizing glycine action in rat auditory neurones is due to age-dependent Cl- regulation.
    Ehrlich I; Lohrke S; Friauf E
    J Physiol; 1999 Oct; 520 Pt 1(Pt 1):121-37. PubMed ID: 10517806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GABA beyond the synapse: defining the subtype-specific pharmacodynamics of non-synaptic GABA
    Lagrange AH; Hu N; Macdonald RL
    J Physiol; 2018 Sep; 596(18):4475-4495. PubMed ID: 30019335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GABAA receptors mediate trophic effects of GABA on embryonic brainstem monoamine neurons in vitro.
    Liu J; Morrow AL; Devaud L; Grayson DR; Lauder JM
    J Neurosci; 1997 Apr; 17(7):2420-8. PubMed ID: 9065503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.