These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 30776217)

  • 1. Microbial Chromate Reduction Coupled to Anaerobic Oxidation of Elemental Sulfur or Zerovalent Iron.
    Shi J; Zhang B; Qiu R; Lai C; Jiang Y; He C; Guo J
    Environ Sci Technol; 2019 Mar; 53(6):3198-3207. PubMed ID: 30776217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial chromate reduction coupled with anaerobic oxidation of methane in a membrane biofilm reactor.
    Luo JH; Wu M; Liu J; Qian G; Yuan Z; Guo J
    Environ Int; 2019 Sep; 130():104926. PubMed ID: 31228790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Microbial Chromate Reduction Using Hydrogen and Methane as Joint Electron Donors.
    He C; Zhang B; Yan W; Ding D; Guo J
    J Hazard Mater; 2020 Aug; 395():122684. PubMed ID: 32330782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic methane oxidation coupled to chromate reduction in a methane-based membrane biofilm batch reactor.
    Dong QY; Wang Z; Shi LD; Lai CY; Zhao HP
    Environ Sci Pollut Res Int; 2019 Sep; 26(25):26286-26292. PubMed ID: 31286367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autotrophic induced heterotrophic bioreduction of bromate in use of elemental sulfur or zerovalent iron as electron donor.
    Liu C; Li W; Liu L; Yu H; Liu F; Lee DJ
    Bioresour Technol; 2020 Dec; 317():124015. PubMed ID: 32827978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic bioreduction of Te(Ⅳ) using S(0) as electron donor.
    Liu C; Li W; Yu H; Liu L; Zhao D; Lee DJ
    Bioresour Technol; 2022 Jan; 343():125896. PubMed ID: 34649059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of chromate from electroplating wastewater from pH 1 to 2 using fluidized zero valent iron process.
    Chen SS; Cheng CY; Li CW; Chai PH; Chang YM
    J Hazard Mater; 2007 Apr; 142(1-2):362-7. PubMed ID: 16987595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustainable bioreduction of toxic levels of chromate in a denitrifying granular sludge reactor.
    Kiran Kumar Reddy G; Nancharaiah YV
    Environ Sci Pollut Res Int; 2018 Jan; 25(2):1969-1979. PubMed ID: 29105040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of electron shuttle enhances Fe(III)-mediated reduction of Cr(VI) by Shewanella oneidensis MR-1.
    Liu X; Chu G; Du Y; Li J; Si Y
    World J Microbiol Biotechnol; 2019 Mar; 35(4):64. PubMed ID: 30923928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox interactions between Cr(VI) and Fe(II) in bioreduced biotite and chlorite.
    Brookshaw DR; Coker VS; Lloyd JR; Vaughan DJ; Pattrick RA
    Environ Sci Technol; 2014 Oct; 48(19):11337-42. PubMed ID: 25196156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic co-reduction of chromate and nitrate by bacterial cultures of Staphylococcus epidermidis L-02.
    Vatsouria A; Vainshtein M; Kuschk P; Wiessner A; D K; Kaestner M
    J Ind Microbiol Biotechnol; 2005 Sep; 32(9):409-14. PubMed ID: 16091944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioreduction of Chromate in a Methane-Based Membrane Biofilm Reactor.
    Lai CY; Zhong L; Zhang Y; Chen JX; Wen LL; Shi LD; Sun YP; Ma F; Rittmann BE; Zhou C; Tang Y; Zheng P; Zhao HP
    Environ Sci Technol; 2016 Jun; 50(11):5832-9. PubMed ID: 27161770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria.
    Wielinga B; Mizuba MM; Hansel CM; Fendorf S
    Environ Sci Technol; 2001 Feb; 35(3):522-7. PubMed ID: 11351723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding chromate reaction kinetics with corroding iron media using Tafel analysis and electrochemical impedance spectroscopy.
    Melitas N; Farrell J
    Environ Sci Technol; 2002 Dec; 36(24):5476-82. PubMed ID: 12521178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cr(VI) reduction coupled with anaerobic oxidation of methane in a laboratory reactor.
    Lu YZ; Fu L; Ding J; Ding ZW; Li N; Zeng RJ
    Water Res; 2016 Oct; 102():445-452. PubMed ID: 27395029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship of hydrogen bioavailability to chromate reduction in aquifer sediments.
    Marsh TL; McInerney MJ
    Appl Environ Microbiol; 2001 Apr; 67(4):1517-21. PubMed ID: 11282599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Reactivity and Electron Selectivity of Sulfidated Zerovalent Iron toward Chromate under Aerobic Conditions.
    Li J; Zhang X; Liu M; Pan B; Zhang W; Shi Z; Guan X
    Environ Sci Technol; 2018 Mar; 52(5):2988-2997. PubMed ID: 29446929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disentangling Microbial Syntrophic Mechanisms for Hexavalent Chromium Reduction in Autotrophic Biosystems.
    Zhang B; Liu J; Sheng Y; Shi J; Dong H
    Environ Sci Technol; 2021 May; 55(9):6340-6351. PubMed ID: 33866784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing chromate reduction by dissimilatory iron reducing bacteria using mathematical modeling.
    Peng L; Liu Y; Gao SH; Dai X; Ni BJ
    Chemosphere; 2015 Nov; 139():334-9. PubMed ID: 26171818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polysulfide speciation and reactivity in chromate-contaminated soil.
    Chrysochoou M; Johnston CP
    J Hazard Mater; 2015 Jan; 281():87-94. PubMed ID: 25092639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.