These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 30776314)
21. Phase and sedimentation behavior of oil (octane) dispersions in the presence of model mineral aggregates. Gupta A; Sender M; Fields S; Bothun GD Mar Pollut Bull; 2014 Oct; 87(1-2):164-170. PubMed ID: 25172613 [TBL] [Abstract][Full Text] [Related]
22. Silicone oil emulsions stabilized by semi-solid nanostructures entrapped at the interface. Nam YS; Kim JW; Shim J; Han SH; Kim HK J Colloid Interface Sci; 2010 Nov; 351(1):102-7. PubMed ID: 20701920 [TBL] [Abstract][Full Text] [Related]
23. Destabilization mechanisms in a triple emulsion with Janus drops. Hasinovic H; Friberg SE J Colloid Interface Sci; 2011 Sep; 361(2):581-6. PubMed ID: 21705010 [TBL] [Abstract][Full Text] [Related]
24. Temperature and composition induced morphology transition of Cerberus emulsion droplets. Ge L; Tong W; Bian Q; Wei D; Guo R J Colloid Interface Sci; 2019 Oct; 554():210-219. PubMed ID: 31301521 [TBL] [Abstract][Full Text] [Related]
25. Interfacial Instability of Emulsion Droplets Containing a Polymer and a Fatty Alcohol. Liu S; Li X; Hu L; Deng S; Zhang W; Liu P; Zhang Y Langmuir; 2020 Apr; 36(14):3821-3825. PubMed ID: 32202117 [TBL] [Abstract][Full Text] [Related]
27. Micropipette manipulation: a technique to evaluate the stability of water-in-oil emulsions containing proteins. Jorgensen L; Kim DH; Vermehren C; Bjerregaard S; Frokjaer S J Pharm Sci; 2004 Dec; 93(12):2994-3003. PubMed ID: 15468333 [TBL] [Abstract][Full Text] [Related]
28. Cross-talk between emulsion drops: how are hydrophilic reagents transported across oil phases? Etienne G; Vian A; Biočanin M; Deplancke B; Amstad E Lab Chip; 2018 Dec; 18(24):3903-3912. PubMed ID: 30465575 [TBL] [Abstract][Full Text] [Related]
29. Formulation and Composition Effects in Phase Transitions of Emulsions Costabilized by Cellulose Nanofibrils and an Ionic Surfactant. Huan S; Yokota S; Bai L; Ago M; Borghei M; Kondo T; Rojas OJ Biomacromolecules; 2017 Dec; 18(12):4393-4404. PubMed ID: 29131593 [TBL] [Abstract][Full Text] [Related]
30. Interfacial adsorption and surfactant release characteristics of magnetically functionalized halloysite nanotubes for responsive emulsions. Owoseni O; Nyankson E; Zhang Y; Adams DJ; He J; Spinu L; McPherson GL; Bose A; Gupta RB; John VT J Colloid Interface Sci; 2016 Feb; 463():288-98. PubMed ID: 26555959 [TBL] [Abstract][Full Text] [Related]
31. Destabilization mechanism of (W Jin H; Ge L; Li X; Guo R J Colloid Interface Sci; 2021 Mar; 585():205-216. PubMed ID: 33285459 [TBL] [Abstract][Full Text] [Related]
34. A novel method to quantify the amount of surfactant at the oil/water interface and to determine total interfacial area of emulsions. James-Smith MA; Alford K; Shah DO J Colloid Interface Sci; 2007 Jun; 310(2):590-8. PubMed ID: 17321537 [TBL] [Abstract][Full Text] [Related]
37. An Electrical Suspension Method for Measuring the Electric Charge on Small Silicone Oil Droplets Dispersed in Aqueous Solutions. Gu Y; Li D J Colloid Interface Sci; 1997 Nov; 195(2):343-52. PubMed ID: 9441636 [TBL] [Abstract][Full Text] [Related]
38. Characteristics of Electrorheological Responses in an Emulsion System. Pan XD; McKinley GH J Colloid Interface Sci; 1997 Nov; 195(1):101-13. PubMed ID: 9441611 [TBL] [Abstract][Full Text] [Related]
39. High internal phase emulsion with double emulsion morphology and their templated porous polymer systems. Lei L; Zhang Q; Shi S; Zhu S J Colloid Interface Sci; 2016 Dec; 483():232-240. PubMed ID: 27560496 [TBL] [Abstract][Full Text] [Related]