BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 30776404)

  • 1. Investigation of Resting-State BOLD Networks in the Human Brainstem and Spinal Cord.
    Harita S; Ioachim G; Powers J; Stroman PW
    Neuroscience; 2019 Apr; 404():71-81. PubMed ID: 30776404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing Coordinated Networks Across the Brainstem and Spinal Cord in the Resting State and Altered Cognitive State.
    Ioachim G; Powers JM; Stroman PW
    Brain Connect; 2019 Jun; 9(5):415-424. PubMed ID: 30909725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confirmation of resting-state BOLD fluctuations in the human brainstem and spinal cord after identification and removal of physiological noise.
    Harita S; Stroman PW
    Magn Reson Med; 2017 Dec; 78(6):2149-2156. PubMed ID: 28074492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordinated Human Brainstem and Spinal Cord Networks during the Expectation of Pain Have Elements Unique from Resting-State Effects.
    Ioachim G; Powers JM; Warren HJM; Stroman PW
    Brain Sci; 2020 Aug; 10(9):. PubMed ID: 32824896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal cord response to stepwise and block presentation of thermal stimuli: a functional MRI study.
    Bosma RL; Stroman PW
    J Magn Reson Imaging; 2015 May; 41(5):1318-25. PubMed ID: 24807470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How restful is it with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional imaging in resting-state fMRI.
    Andoh J; Ferreira M; Leppert IR; Matsushita R; Pike B; Zatorre RJ
    Neuroimage; 2017 Feb; 147():726-735. PubMed ID: 27902936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inter-individual differences in pain processing investigated by functional magnetic resonance imaging of the brainstem and spinal cord.
    Khan HS; Stroman PW
    Neuroscience; 2015 Oct; 307():231-41. PubMed ID: 26335379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A NIRS-fMRI study of resting state network.
    Sasai S; Homae F; Watanabe H; Sasaki AT; Tanabe HC; Sadato N; Taga G
    Neuroimage; 2012 Oct; 63(1):179-93. PubMed ID: 22713670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing the modulation of resting-state fMRI metrics by baseline physiology.
    Chu PPW; Golestani AM; Kwinta JB; Khatamian YB; Chen JJ
    Neuroimage; 2018 Jun; 173():72-87. PubMed ID: 29452265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliability of resting-state functional connectivity in the human spinal cord: Assessing the impact of distinct noise sources.
    Kaptan M; Horn U; Vannesjo SJ; Mildner T; Weiskopf N; Finsterbusch J; Brooks JCW; Eippert F
    Neuroimage; 2023 Jul; 275():120152. PubMed ID: 37142169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsically organized resting state networks in the human spinal cord.
    Kong Y; Eippert F; Beckmann CF; Andersson J; Finsterbusch J; Büchel C; Tracey I; Brooks JC
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):18067-72. PubMed ID: 25472845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resting state networks in human cervical spinal cord observed with fMRI.
    Wei P; Li J; Gao F; Ye D; Zhong Q; Liu S
    Eur J Appl Physiol; 2010 Jan; 108(2):265-71. PubMed ID: 19777254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluctuations of the EEG-fMRI correlation reflect intrinsic strength of functional connectivity in default mode network.
    Keinänen T; Rytky S; Korhonen V; Huotari N; Nikkinen J; Tervonen O; Palva JM; Kiviniemi V
    J Neurosci Res; 2018 Oct; 96(10):1689-1698. PubMed ID: 29761531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of global signal regression on DCM estimates of noise and effective connectivity from resting state fMRI.
    Almgren H; Van de Steen F; Razi A; Friston K; Marinazzo D
    Neuroimage; 2020 Mar; 208():116435. PubMed ID: 31816423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of resting-state functional connectivity in the lumbar spinal cord with 3T MRI.
    Combes A; Narisetti L; Sengupta A; Rogers BP; Sweeney G; Prock L; Houston D; McKnight CD; Gore JC; Smith SA; O'Grady KP
    Sci Rep; 2023 Oct; 13(1):18189. PubMed ID: 37875563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distributed BOLD and CBV-weighted resting-state networks in the mouse brain.
    Sforazzini F; Schwarz AJ; Galbusera A; Bifone A; Gozzi A
    Neuroimage; 2014 Feb; 87():403-15. PubMed ID: 24080504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal cord neural activity of patients with fibromyalgia and healthy controls during temporal summation of pain: an fMRI study.
    Staud R; Boissoneault J; Lai S; Mejia MS; Ramanlal R; Godfrey MM; Stroman PW
    J Neurophysiol; 2021 Sep; 126(3):946-956. PubMed ID: 34406893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting resting-state brain activity using OEF-weighted imaging.
    Yang Y; Yin Y; Lu J; Zou Q; Gao JH
    Neuroimage; 2019 Oct; 200():101-120. PubMed ID: 31228637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resting state network connectivity is attenuated by fMRI acoustic noise.
    Pellegrino G; Schuler AL; Arcara G; Di Pino G; Piccione F; Kobayashi E
    Neuroimage; 2022 Feb; 247():118791. PubMed ID: 34920084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractal analysis of spontaneous fluctuations of the BOLD signal in the human brain networks.
    Li YC; Huang YA
    J Magn Reson Imaging; 2014 May; 39(5):1118-25. PubMed ID: 24027126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.