These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 30776458)

  • 1. Oleanolic acid 3-glucoside, a synthetic oleanane-type saponin, alleviates methylmercury toxicity in vitro and in vivo.
    Nakamura R; Shirahata T; Konishi N; Takanezawa Y; Sone Y; Uraguchi S; Kobayashi Y; Kiyono M
    Toxicology; 2019 Apr; 417():15-22. PubMed ID: 30776458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oleanolic acid-3-glucoside, a synthetic oleanane-type saponin, ameliorates methylmercury-induced dysfunction of synaptic transmission in mice.
    Nakamura R; Iwai T; Takanezawa Y; Shirahata T; Konishi N; Ohshiro Y; Uraguchi S; Tanabe M; Kobayashi Y; Sakamoto K; Nakahara T; Yamamoto M; Kiyono M
    Toxicology; 2024 Aug; 506():153867. PubMed ID: 38906242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diphenyl diselenide, a simple organoselenium compound, decreases methylmercury-induced cerebral, hepatic and renal oxidative stress and mercury deposition in adult mice.
    de Freitas AS; Funck VR; Rotta Mdos S; Bohrer D; Mörschbächer V; Puntel RL; Nogueira CW; Farina M; Aschner M; Rocha JB
    Brain Res Bull; 2009 Apr; 79(1):77-84. PubMed ID: 19047014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased methylmercury toxicity related to obesity in diabetic KK-Ay mice.
    Yamamoto M; Yanagisawa R; Motomura E; Nakamura M; Sakamoto M; Takeya M; Eto K
    J Appl Toxicol; 2014 Aug; 34(8):914-23. PubMed ID: 24243536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of Oleanolic Acid Analogues and Their Cytotoxic Effects on 3T3 Cell Line.
    Tuncay S; Senol H; Guler EM; Ocal N; Secen H; Kocyigit A; Topcu G
    Med Chem; 2018; 14(6):617-625. PubMed ID: 29473521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methionine stimulates motor impairment and cerebellar mercury deposition in methylmercury-exposed mice.
    Zimmermann LT; dos Santos DB; Colle D; dos Santos AA; Hort MA; Garcia SC; Bressan LP; Bohrer D; Farina M
    J Toxicol Environ Health A; 2014; 77(1-3):46-56. PubMed ID: 24555646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The immunosuppressive effect of methylmercury does not preclude development of autoimmunity in genetically susceptible mice.
    Häggqvist B; Havarinasab S; Björn E; Hultman P
    Toxicology; 2005 Mar; 208(1):149-64. PubMed ID: 15664442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of MIP-2 and MCP-5 Expression in Methylmercury-Exposed Mice and Their Suppression by N-Acetyl-L-Cysteine.
    Muniroh M; Gumay AR; Indraswari DA; Bahtiar Y; Hardian H; Bakri S; Maharani N; Karlowee V; Koriyama C; Yamamoto M
    Neurotox Res; 2020 Apr; 37(4):827-834. PubMed ID: 32040762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mercury species in lymphoid and non-lymphoid tissues after exposure to methyl mercury: correlation with autoimmune parameters during and after treatment in susceptible mice.
    Havarinasab S; Björn E; Nielsen JB; Hultman P
    Toxicol Appl Pharmacol; 2007 May; 221(1):21-8. PubMed ID: 17399758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methylmercury interaction with lymphocyte cholinergic muscarinic receptors in developing rats.
    Coccini T; Randine G; Castoldi AF; Acerbi D; Manzo L
    Environ Res; 2007 Feb; 103(2):229-37. PubMed ID: 16808911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in Renal Function and Oxidative Status Associated with the Hypotensive Effects of Oleanolic Acid and Related Synthetic Derivatives in Experimental Animals.
    Madlala HP; Van Heerden FR; Mubagwa K; Musabayane CT
    PLoS One; 2015; 10(6):e0128192. PubMed ID: 26046776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dietary selenomethionine influences the accumulation and depuration of dietary methylmercury in zebrafish (Danio rerio).
    Amlund H; Lundebye AK; Boyle D; Ellingsen S
    Aquat Toxicol; 2015 Jan; 158():211-7. PubMed ID: 25481787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and Evaluation of a Series of Oleanolic Acid Saponins as α-Glucosidase and α-Amylase Inhibitors.
    Guo T; Wu S; Guo S; Bai L; Liu Q; Bai N
    Arch Pharm (Weinheim); 2015 Sep; 348(9):615-28. PubMed ID: 26207761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of in vivo with in vitro pharmacokinetics of mercury between methylmercury chloride and methylmercury cysteine using rats and Caco2 cells.
    Mori N; Yamamoto M; Tsukada E; Yokooji T; Matsumura N; Sasaki M; Murakami T
    Arch Environ Contam Toxicol; 2012 Nov; 63(4):628-36. PubMed ID: 22932937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of 2,3-dimercapto-1-propanesulfonic acid (DMPS) on methylmercury-induced locomotor deficits and cerebellar toxicity in mice.
    Carvalho MC; Franco JL; Ghizoni H; Kobus K; Nazari EM; Rocha JB; Nogueira CW; Dafre AL; Müller YM; Farina M
    Toxicology; 2007 Oct; 239(3):195-203. PubMed ID: 17703864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex methylmercury-cysteine alters mercury accumulation in different tissues of mice.
    Roos DH; Puntel RL; Lugokenski TH; Ineu RP; Bohrer D; Burger ME; Franco JL; Farina M; Aschner M; Rocha JB; de Vargas Barbosa NB
    Basic Clin Pharmacol Toxicol; 2010 Oct; 107(4):789-92. PubMed ID: 20486922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable and episodic/bolus patterns of methylmercury exposure on mercury accumulation and histopathologic alterations in the nervous system.
    Sakamoto M; Kakita A; Domingo JL; Yamazaki H; Oliveira RB; Sarrazin SL; Eto K; Murata K
    Environ Res; 2017 Jan; 152():446-453. PubMed ID: 27450633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurobehavioral effect of chronic and bolus doses of methylmercury following prenatal exposure in C57BL/6 weanling mice.
    Liang J; Inskip M; Newhook D; Messier C
    Neurotoxicol Teratol; 2009; 31(6):372-81. PubMed ID: 19706324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue distribution as a factor in species susceptibility to toxicity and hazard assessment. Example: methylmercury.
    Willes RF
    J Environ Pathol Toxicol; 1977; 1(2):135-46. PubMed ID: 553127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulating effects of dietary fats on methylmercury toxicity and distribution in rats.
    Jin X; Lok E; Bondy G; Caldwell D; Mueller R; Kapal K; Armstrong C; Taylor M; Kubow S; Mehta R; Chan HM
    Toxicology; 2007 Jan; 230(1):22-44. PubMed ID: 17184894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.