These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30776565)

  • 1. In-situ Overhauser-enhanced nuclear magnetic resonance at less than 1 μT using an atomic magnetometer.
    Lee HJ; Lee SJ; Shim JH; Moon HS; Kim K
    J Magn Reson; 2019 Mar; 300():149-152. PubMed ID: 30776565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zero- to ultralow-field nuclear magnetic resonance J-spectroscopy with commercial atomic magnetometers.
    Blanchard JW; Wu T; Eills J; Hu Y; Budker D
    J Magn Reson; 2020 May; 314():106723. PubMed ID: 32298993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Invited Review Article: Instrumentation for nuclear magnetic resonance in zero and ultralow magnetic field.
    Tayler MCD; Theis T; Sjolander TF; Blanchard JW; Kentner A; Pustelny S; Pines A; Budker D
    Rev Sci Instrum; 2017 Sep; 88(9):091101. PubMed ID: 28964224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultralow field NMR spectrometer with an atomic magnetometer near room temperature.
    Liu G; Li X; Sun X; Feng J; Ye C; Zhou X
    J Magn Reson; 2013 Dec; 237():158-163. PubMed ID: 24225528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear magnetic resonance at millitesla fields using a zero-field spectrometer.
    Tayler MCD; Sjolander TF; Pines A; Budker D
    J Magn Reson; 2016 Sep; 270():35-39. PubMed ID: 27391123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heisenberg spin exchange effects of nitroxide radicals on Overhauser dynamic nuclear polarization in the low field limit at 1.5mT.
    Lingwood MD; Ivanov IA; Cote AR; Han S
    J Magn Reson; 2010 May; 204(1):56-63. PubMed ID: 20188611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-situ determination of spin polarization in a single-beam fiber-coupled spin-exchange-relaxation-free atomic magnetometer with differential detection.
    Ma Y; Qiao Z; Chen Y; Luo G; Yu M; Wang Y; Lu D; Zhao L; Yang P; Lin Q; Jiang Z
    Opt Express; 2023 Jan; 31(3):3743-3754. PubMed ID: 36785360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zero-field NMR enhanced by parahydrogen in reversible exchange.
    Theis T; Ledbetter MP; Kervern G; Blanchard JW; Ganssle PJ; Butler MC; Shin HD; Budker D; Pines A
    J Am Chem Soc; 2012 Mar; 134(9):3987-90. PubMed ID: 22332806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulsed operation of a miniature scalar optically pumped magnetometer.
    Gerginov V; Krzyzewski S; Knappe S
    J Opt Soc Am B; 2017; 34(7):1429-1434. PubMed ID: 29805196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zero-field remote detection of NMR with a microfabricated atomic magnetometer.
    Ledbetter MP; Savukov IM; Budker D; Shah V; Knappe S; Kitching J; Michalak DJ; Xu S; Pines A
    Proc Natl Acad Sci U S A; 2008 Feb; 105(7):2286-90. PubMed ID: 18287080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics-based selectivity for Fast-Field-Cycling relaxometry by Overhauser and solid effect dynamic nuclear polarization.
    Neudert O; Mattea C; Stapf S
    J Magn Reson; 2017 Mar; 276():113-121. PubMed ID: 28183023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperpolarized xenon nuclear spins detected by optical atomic magnetometry.
    Yashchuk VV; Granwehr J; Kimball DF; Rochester SM; Trabesinger AH; Urban JT; Budker D; Pines A
    Phys Rev Lett; 2004 Oct; 93(16):160801. PubMed ID: 15524968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR detection with an atomic magnetometer.
    Savukov IM; Romalis MV
    Phys Rev Lett; 2005 Apr; 94(12):123001. PubMed ID: 15903914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zero- to Ultralow-Field Nuclear Magnetic Resonance Enhanced with Dissolution Dynamic Nuclear Polarization.
    Picazo-Frutos R; Stern Q; Blanchard JW; Cala O; Ceillier M; Cousin SF; Eills J; Elliott SJ; Jannin S; Budker D
    Anal Chem; 2023 Jan; 95(2):720-729. PubMed ID: 36563171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acousto-optic modulation detection method in an all-optical K-Rb hybrid atomic magnetometer using uniform design method.
    Yao H; Li Y; Ma D; Cai J; Zhao J; Ding M
    Opt Express; 2018 Oct; 26(22):28682-28692. PubMed ID: 30470041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An optically modulated zero-field atomic magnetometer with suppressed spin-exchange broadening.
    Jiménez-Martínez R; Knappe S; Kitching J
    Rev Sci Instrum; 2014 Apr; 85(4):045124. PubMed ID: 24784676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-Situ Measurement of Electrical-Heating-Induced Magnetic Field for an Atomic Magnetometer.
    Lu J; Wang J; Yang K; Zhao J; Quan W; Han B; Ding M
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32218349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of ultra-low field NMR signal with a commercial QuSpin single-beam atomic magnetometer.
    Savukov I; Kim YJ; Schultz G
    J Magn Reson; 2020 Aug; 317():106780. PubMed ID: 32688163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Static weak magnetic field measurements based on low-field nuclear magnetic resonance.
    Wang X; Zhu M; Xiao K; Guo J; Wang L
    J Magn Reson; 2019 Oct; 307():106580. PubMed ID: 31454700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new model for Overhauser enhanced nuclear magnetic resonance using nitroxide radicals.
    Armstrong BD; Han S
    J Chem Phys; 2007 Sep; 127(10):104508. PubMed ID: 17867762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.