BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 30776679)

  • 21. Capacity of octacalcium phosphate to promote osteoblastic differentiation toward osteocytes in vitro.
    Sai Y; Shiwaku Y; Anada T; Tsuchiya K; Takahashi T; Suzuki O
    Acta Biomater; 2018 Mar; 69():362-371. PubMed ID: 29378325
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancement of osteoblastic differentiation in alginate gel beads with bioactive octacalcium phosphate particles.
    Endo K; Anada T; Yamada M; Seki M; Sasaki K; Suzuki O
    Biomed Mater; 2015 Dec; 10(6):065019. PubMed ID: 26657659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reinforcement of poly-l-lactic acid electrospun membranes with strontium borosilicate bioactive glasses for bone tissue engineering.
    Fernandes JS; Gentile P; Martins M; Neves NM; Miller C; Crawford A; Pires RA; Hatton P; Reis RL
    Acta Biomater; 2016 Oct; 44():168-77. PubMed ID: 27554018
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Strontium-incorporated mineralized PLLA nanofibrous membranes for promoting bone defect repair.
    Han X; Zhou X; Qiu K; Feng W; Mo H; Wang M; Wang J; He C
    Colloids Surf B Biointerfaces; 2019 Jul; 179():363-373. PubMed ID: 30999115
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of mineralized polymeric nanofibrous composites for bone graft materials.
    Ngiam M; Liao S; Patil AJ; Cheng Z; Yang F; Gubler MJ; Ramakrishna S; Chan CK
    Tissue Eng Part A; 2009 Mar; 15(3):535-46. PubMed ID: 18759670
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In situ growth of hydroxyapatite within electrospun poly(DL-lactide) fibers.
    Cui W; Li X; Zhou S; Weng J
    J Biomed Mater Res A; 2007 Sep; 82(4):831-41. PubMed ID: 17326137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differentiation of committed osteoblast progenitors by octacalcium phosphate compared to calcium-deficient hydroxyapatite in Lepr-cre/Tomato mouse tibia.
    Okuyama K; Shiwaku Y; Hamai R; Mizoguchi T; Tsuchiya K; Takahashi T; Suzuki O
    Acta Biomater; 2022 Apr; 142():332-344. PubMed ID: 35183778
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro investigation of nanohydroxyapatite/poly(L-lactic acid) spindle composites used for bone tissue engineering.
    Yan W; Zhang CY; Xia LL; Zhang T; Fang QF
    J Mater Sci Mater Med; 2016 Aug; 27(8):130. PubMed ID: 27379628
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanofibrous Mineralized Electrospun Scaffold as a Substrate for Bone Tissue Regeneration.
    Park H; Lim DJ; Lee SH; Park H
    J Biomed Nanotechnol; 2016 Nov; 12(11):2076-82. PubMed ID: 29364624
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural, morphological and surface characteristics of two types of octacalcium phosphate-derived fluoride-containing apatitic calcium phosphates.
    Shiwaku Y; Anada T; Yamazaki H; Honda Y; Morimoto S; Sasaki K; Suzuki O
    Acta Biomater; 2012 Dec; 8(12):4417-25. PubMed ID: 22868193
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical analysis of calcium phosphate precipitation in simulated body fluid.
    Lu X; Leng Y
    Biomaterials; 2005 Apr; 26(10):1097-108. PubMed ID: 15451629
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite.
    Suzuki O; Kamakura S; Katagiri T; Nakamura M; Zhao B; Honda Y; Kamijo R
    Biomaterials; 2006 May; 27(13):2671-81. PubMed ID: 16413054
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The synergistic effect of nano-hydroxyapatite and dexamethasone in the fibrous delivery system of gelatin and poly(l-lactide) on the osteogenesis of mesenchymal stem cells.
    Amjadian S; Seyedjafari E; Zeynali B; Shabani I
    Int J Pharm; 2016 Jun; 507(1-2):1-11. PubMed ID: 27107902
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bone regeneration by synthetic octacalcium phosphate and its role in biological mineralization.
    Suzuki O; Imaizumi H; Kamakura S; Katagiri T
    Curr Med Chem; 2008; 15(3):305-13. PubMed ID: 18288986
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dissolution, bioactivity and osteogenic properties of composites based on polymer and silicate or borosilicate bioactive glass.
    Houaoui A; Lyyra I; Agniel R; Pauthe E; Massera J; Boissière M
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110340. PubMed ID: 31761244
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Octacalcium phosphate bone substitute materials: Comparison between properties of biomaterials and other calcium phosphate materials.
    Suzuki O; Shiwaku Y; Hamai R
    Dent Mater J; 2020 Mar; 39(2):187-199. PubMed ID: 32161239
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced osteogenesis and angiogenesis by PCL/chitosan/Sr-doped calcium phosphate electrospun nanocomposite membrane for guided bone regeneration.
    Ye H; Zhu J; Deng D; Jin S; Li J; Man Y
    J Biomater Sci Polym Ed; 2019 Nov; 30(16):1505-1522. PubMed ID: 31322979
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation and characterization of porous alginate scaffolds containing various amounts of octacalcium phosphate (OCP) crystals.
    Shiraishi N; Anada T; Honda Y; Masuda T; Sasaki K; Suzuki O
    J Mater Sci Mater Med; 2010 Mar; 21(3):907-14. PubMed ID: 19851838
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrafast bone-like apatite formation on highly porous poly(l-lactic acid)-hydroxyapatite fibres.
    Zhu J; Tang D; Lu Z; Xin Z; Song J; Meng J; Lu JR; Li Z; Li J
    Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111168. PubMed ID: 32806301
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering.
    Lou T; Wang X; Song G; Gu Z; Yang Z
    Int J Biol Macromol; 2014 Aug; 69():464-70. PubMed ID: 24933519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.