These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Design, synthesis and biological evaluation of nitrofuran-1,3,4-oxadiazole hybrids as new antitubercular agents. Wang A; Xu S; Chai Y; Xia G; Wang B; Lv K; Wang D; Qin X; Jiang B; Wu W; Liu M; Lu Y Bioorg Med Chem; 2022 Jan; 53():116529. PubMed ID: 34861474 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of novel 5-aryl-2-thio-1,3,4-oxadiazoles and the study of their structure-anti-mycobacterial activities. Macaev F; Rusu G; Pogrebnoi S; Gudima A; Stingaci E; Vlad L; Shvets N; Kandemirli F; Dimoglo A; Reynolds R Bioorg Med Chem; 2005 Aug; 13(16):4842-50. PubMed ID: 15993090 [TBL] [Abstract][Full Text] [Related]
4. Design, synthesis and in silico study of pyridine based 1,3,4-oxadiazole embedded hydrazinecarbothioamide derivatives as potent anti-tubercular agent. Ambhore AN; Kamble SS; Kadam SN; Kamble RD; Hebade MJ; Hese SV; Gaikwad MV; Meshram RJ; Gacche RN; Dawane BS Comput Biol Chem; 2019 Jun; 80():54-65. PubMed ID: 30901601 [TBL] [Abstract][Full Text] [Related]
5. Deb PK; Al-Shar'i NA; Venugopala KN; Pillay M; Borah P J Enzyme Inhib Med Chem; 2021 Dec; 36(1):869-884. PubMed ID: 34060396 [TBL] [Abstract][Full Text] [Related]
6. Synthesis, biological evaluation and molecular docking study of some novel indole and pyridine based 1,3,4-oxadiazole derivatives as potential antitubercular agents. Desai NC; Somani H; Trivedi A; Bhatt K; Nawale L; Khedkar VM; Jha PC; Sarkar D Bioorg Med Chem Lett; 2016 Apr; 26(7):1776-83. PubMed ID: 26920799 [TBL] [Abstract][Full Text] [Related]
7. Design, synthesis, and in vitro antituberculosis activity of benzo[6,7]cyclohepta[1,2-b]pyridine-1,3,4-oxadiazole derivatives. Sajja Y; Vanguru S; Vulupala HR; Nagarapu L; Perumal Y; Sriram D; Nanubolu JB Chem Biol Drug Des; 2017 Oct; 90(4):496-500. PubMed ID: 28267891 [TBL] [Abstract][Full Text] [Related]
8. New lipophilic isoniazid derivatives and their 1,3,4-oxadiazole analogues: Synthesis, antimycobacterial activity and investigation of their mechanism of action. Vosátka R; Krátký M; Švarcová M; Janoušek J; Stolaříková J; Madacki J; Huszár S; Mikušová K; Korduláková J; Trejtnar F; Vinšová J Eur J Med Chem; 2018 May; 151():824-835. PubMed ID: 29679902 [TBL] [Abstract][Full Text] [Related]
9. Synthesis, antituberculosis studies and biological evaluation of new quinoline derivatives carrying 1,2,4-oxadiazole moiety. Shruthi TG; Eswaran S; Shivarudraiah P; Narayanan S; Subramanian S Bioorg Med Chem Lett; 2019 Jan; 29(1):97-102. PubMed ID: 30448235 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and antitubercular activity of new 1,3,4-oxadiazoles bearing pyridyl and thiazolyl scaffolds. Dhumal ST; Deshmukh AR; Bhosle MR; Khedkar VM; Nawale LU; Sarkar D; Mane RA Bioorg Med Chem Lett; 2016 Aug; 26(15):3646-51. PubMed ID: 27301367 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of alkynylated 1,2,4-oxadiazole/1,2,3-1H-triazole glycoconjugates: Discovering new compounds for use in chemotherapy against lung carcinoma and Mycobacterium tuberculosis. Melo de Oliveira VN; Flávia do Amaral Moura C; Peixoto ADS; Gonçalves Ferreira VP; Araújo HM; Lapa Montenegro Pimentel LM; Pessoa CDÓ; Nicolete R; Versiani Dos Anjos J; Sharma PP; Rathi B; Pena LJ; Rollin P; Tatibouët A; Nascimento de Oliveira R Eur J Med Chem; 2021 Aug; 220():113472. PubMed ID: 33940463 [TBL] [Abstract][Full Text] [Related]
12. Antimycobacterial activity of substituted isosteres of pyridine- and pyrazinecarboxylic acids. 2. Gezginci MH; Martin AR; Franzblau SG J Med Chem; 2001 May; 44(10):1560-3. PubMed ID: 11334565 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and biological evaluation of 1,2,4-triazole-3-thione and 1,3,4-oxadiazole-2-thione as antimycobacterial agents. Sonawane AD; Rode ND; Nawale L; Joshi RR; Joshi RA; Likhite AP; Sarkar D Chem Biol Drug Des; 2017 Aug; 90(2):200-209. PubMed ID: 28083914 [TBL] [Abstract][Full Text] [Related]
14. Design, synthesis, and pharmacological evaluation of fluorinated azoles as anti-tubercular agents. Gholap S; Tambe M; Nawale L; Sarkar D; Sangshetti J; Damale M Arch Pharm (Weinheim); 2018 Feb; 351(2):. PubMed ID: 29292534 [TBL] [Abstract][Full Text] [Related]
15. Development of water-soluble 3,5-dinitrophenyl tetrazole and oxadiazole antitubercular agents. Roh J; Karabanovich G; Vlčková H; Carazo A; Němeček J; Sychra P; Valášková L; Pavliš O; Stolaříková J; Klimešová V; Vávrová K; Pávek P; Hrabálek A Bioorg Med Chem; 2017 Oct; 25(20):5468-5476. PubMed ID: 28835350 [TBL] [Abstract][Full Text] [Related]
16. Design, synthesis, in vitro and in silico studies of 2, 3-diaryl benzofuran derivatives as antitubercular agents. Bhukya B; Shukla A; Chaturvedi V; Trivedi P; Kumar S; Khan F; Negi AS; Srivastava SK Bioorg Chem; 2020 Jun; 99():103784. PubMed ID: 32361184 [TBL] [Abstract][Full Text] [Related]
17. Structure-based design, synthesis and biological evaluation of a newer series of pyrazolo[1,5-a]pyrimidine analogues as potential anti-tubercular agents. Modi P; Patel S; Chhabria M Bioorg Chem; 2019 Jun; 87():240-251. PubMed ID: 30908967 [TBL] [Abstract][Full Text] [Related]
18. Anti-tuberculosis activity and its structure-activity relationship (SAR) studies of oxadiazole derivatives: A key review. Verma SK; Verma R; Verma S; Vaishnav Y; Tiwari SP; Rakesh KP Eur J Med Chem; 2021 Jan; 209():112886. PubMed ID: 33032083 [TBL] [Abstract][Full Text] [Related]
19. Design, synthesis and evaluation of diarylpiperazine derivatives as potent anti-tubercular agents. Penta A; Franzblau S; Wan B; Murugesan S Eur J Med Chem; 2015 Nov; 105():238-44. PubMed ID: 26498570 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and evaluation of novel 4-nitropyrrole-based 1,3,4-oxadiazole derivatives as antimicrobial and anti-tubercular agents. Rane RA; Bangalore P; Borhade SD; Khandare PK Eur J Med Chem; 2013; 70():49-58. PubMed ID: 24140916 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]