These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 30776779)

  • 1. A novel method for analyzing long bone diaphyseal cross-sectional geometry. A GNU Octave CSG Toolkit.
    Bertsatos A; Chovalopoulou ME
    Forensic Sci Int; 2019 Apr; 297():65-71. PubMed ID: 30776779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancements in sex estimation using the diaphyseal cross-sectional geometric properties of the lower and upper limbs.
    Bertsatos A; Garoufi N; Chovalopoulou ME
    Int J Legal Med; 2021 May; 135(3):1035-1046. PubMed ID: 33029676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diaphysator: An online application for the exhaustive cartography and user-friendly statistical analysis of long bone diaphyses.
    Santos F; Lacoste Jeanson A
    Am J Phys Anthropol; 2019 Jun; 169(2):377-384. PubMed ID: 30950516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periosteal versus true cross-sectional geometry: a comparison along humeral, femoral, and tibial diaphyses.
    Macintosh AA; Davies TG; Ryan TM; Shaw CN; Stock JT
    Am J Phys Anthropol; 2013 Mar; 150(3):442-52. PubMed ID: 23359138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in Osteometric Sorting: Utilizing Diaphyseal CSG Properties for Lower Limb Skeletal Pair-Matching.
    Bertsatos A; Chovalopoulou ME
    J Forensic Sci; 2020 Sep; 65(5):1400-1405. PubMed ID: 32569430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating human long bone cross-sectional geometric properties: a comparison of noninvasive methods.
    O'Neill MC; Ruff CB
    J Hum Evol; 2004 Oct; 47(4):221-35. PubMed ID: 15454334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ontogenetic and morphological variation in primate long bones reflects signals of size and behavior.
    Nadell JA; Elton S; Kovarovic K
    Am J Phys Anthropol; 2021 Feb; 174(2):327-351. PubMed ID: 33368154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. morphomap: An R package for long bone landmarking, cortical thickness, and cross-sectional geometry mapping.
    Profico A; Bondioli L; Raia P; O'Higgins P; Marchi D
    Am J Phys Anthropol; 2021 Jan; 174(1):129-139. PubMed ID: 32865237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of relative body breadth on the diaphyseal morphology of the human lower limb.
    Davies TG; Stock JT
    Am J Hum Biol; 2014; 26(6):822-35. PubMed ID: 25163696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in limb bone diaphyseal structure in chimpanzees during development.
    Bleuze MM
    Am J Biol Anthropol; 2024 Aug; 184(4):e24942. PubMed ID: 38602254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Which measures of diaphyseal robusticity are robust? A comparison of external methods of quantifying the strength of long bone diaphyses to cross-sectional geometric properties.
    Stock JT; Shaw CN
    Am J Phys Anthropol; 2007 Nov; 134(3):412-23. PubMed ID: 17632794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The daily grind: Sex- and age-related activity patterns inferred from cross-sectional geometry of long bones in a pre-Columbian muisca population from Tibanica, Colombia.
    Miller MJ; Agarwal SC; Aristizabal L; Langebaek C
    Am J Phys Anthropol; 2018 Oct; 167(2):311-326. PubMed ID: 30192371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-sectional structural variation relative to midshaft along hominine diaphyses. II. The hind limb.
    Mongle CS; Wallace IJ; Grine FE
    Am J Phys Anthropol; 2015 Nov; 158(3):398-407. PubMed ID: 26174045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D quantitative comparative analysis of long bone diaphysis variations in microanatomy and cross-sectional geometry.
    Houssaye A; Taverne M; Cornette R
    J Anat; 2018 May; 232(5):836-849. PubMed ID: 29411354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The importance of accounting for the area of the medullary cavity in cross-sectional geometry: A test based on the femoral midshaft.
    Sparacello VS; Pearson OM
    Am J Phys Anthropol; 2010 Dec; 143(4):612-24. PubMed ID: 20623682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Declining tibial curvature parallels ∼6150 years of decreasing mobility in Central European agriculturalists.
    Macintosh AA; Davies TG; Pinhasi R; Stock JT
    Am J Phys Anthropol; 2015 Jun; 157(2):260-75. PubMed ID: 25677783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drifting Diaphyses: Asymmetry in Diametric Growth and Adaptation Along the Humeral and Femoral Length.
    Maggiano IS; Maggiano CM; Tiesler VG; Chi-Keb JR; Stout SD
    Anat Rec (Hoboken); 2015 Oct; 298(10):1689-99. PubMed ID: 26224448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long bone (humerus, femur, tibia) measuring procedure in cadavers.
    Menéndez Garmendia A; Gómez-Valdés JA; Hernández F; Wesp JK; Sánchez-Mejorada G
    J Forensic Sci; 2014 Sep; 59(5):1325-9. PubMed ID: 24611570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation to differential loading: comparison of growth-related changes in cross-sectional properties of the human femur and humerus.
    Sumner DR; Andriacchi TP
    Bone; 1996 Aug; 19(2):121-6. PubMed ID: 8853855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Periosteal thickness and cellularity in mid-diaphyseal cross-sections from human femora and tibiae of aged donors.
    Moore SR; Milz S; Knothe Tate ML
    J Anat; 2014 Feb; 224(2):142-9. PubMed ID: 24175932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.