These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30776782)

  • 1. Lab-on-a-brane for spheroid formation.
    Bianco M; Zizzari A; Priore P; Moroni L; Metrangolo P; Frigione M; Rella R; Gaballo A; Arima V
    Biofabrication; 2019 Mar; 11(2):021002. PubMed ID: 30776782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-size spheroid formation using microfluidic funnels.
    Marimuthu M; Rousset N; St-Georges-Robillard A; Lateef MA; Ferland M; Mes-Masson AM; Gervais T
    Lab Chip; 2018 Jan; 18(2):304-314. PubMed ID: 29211088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An oxygen-permeable spheroid culture system for the prevention of central hypoxia and necrosis of spheroids.
    Anada T; Fukuda J; Sai Y; Suzuki O
    Biomaterials; 2012 Nov; 33(33):8430-41. PubMed ID: 22940219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Modification Techniques for Endothelial Cell Seeding in PDMS Microfluidic Devices.
    Akther F; Yakob SB; Nguyen NT; Ta HT
    Biosensors (Basel); 2020 Nov; 10(11):. PubMed ID: 33228050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids.
    Ma LD; Wang YT; Wang JR; Wu JL; Meng XS; Hu P; Mu X; Liang QL; Luo GA
    Lab Chip; 2018 Aug; 18(17):2547-2562. PubMed ID: 30019731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Optimization and Design Adaptation toward Spheroid Formation On-Chip.
    Azizipour N; Avazpour R; Sawan M; Ajji A; H Rosenzweig D
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multicellular spheroid formation and extraction chip using removable cell trapping barriers.
    Jin HJ; Cho YH; Gu JM; Kim J; Oh YS
    Lab Chip; 2011 Jan; 11(1):115-9. PubMed ID: 21038070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfibrillated cellulose sheets coating oxygen-permeable PDMS membranes induce rat hepatocytes 3D aggregation into stably-attached 3D hemispheroids.
    Evenou F; Couderc S; Kim B; Fujii T; Sakai Y
    J Biomater Sci Polym Ed; 2011; 22(11):1509-22. PubMed ID: 20626957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in cancer modeling: fluidic systems for increasing representativeness of large 3D multicellular spheroids.
    Piccinini F; Santis I; Bevilacqua A
    Biotechniques; 2018 Dec; 65(6):312-314. PubMed ID: 30477324
    [No Abstract]   [Full Text] [Related]  

  • 11. Fluorescence hyperspectral imaging for live monitoring of multiple spheroids in microfluidic chips.
    St-Georges-Robillard A; Masse M; Cahuzac M; Strupler M; Patra B; Orimoto AM; Kendall-Dupont J; Péant B; Mes-Masson AM; Leblond F; Gervais T
    Analyst; 2018 Aug; 143(16):3829-3840. PubMed ID: 29999046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic Analysis of Different Cell Spheroids with a Microfluidic Device Using Scanning Electrochemical Microscopy and Gene Expression Profiling.
    Zhao L; Shi M; Liu Y; Zheng X; Xiu J; Liu Y; Tian L; Wang H; Zhang M; Zhang X
    Anal Chem; 2019 Apr; 91(7):4307-4311. PubMed ID: 30869520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform.
    Sabhachandani P; Motwani V; Cohen N; Sarkar S; Torchilin V; Konry T
    Lab Chip; 2016 Feb; 16(3):497-505. PubMed ID: 26686985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-Engineered Paper Hanging Drop Chip for 3D Spheroid Culture and Analysis.
    Michael IJ; Kumar S; Oh JM; Kim D; Kim J; Cho YK
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):33839-33846. PubMed ID: 30192134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Throughput Cancer Cell Sphere Formation for 3D Cell Culture.
    Chen YC; Yoon E
    Methods Mol Biol; 2017; 1612():281-291. PubMed ID: 28634951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophobic Patterning-Based 3D Microfluidic Cell Culture Assay.
    Han S; Kim J; Li R; Ma A; Kwan V; Luong K; Sohn LL
    Adv Healthc Mater; 2018 Jun; 7(12):e1800122. PubMed ID: 29700986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable immobilization of rat hepatocytes as hemispheroids onto collagen-conjugated poly-dimethylsiloxane (PDMS) surfaces: importance of direct oxygenation through PDMS for both formation and function.
    Nishikawa M; Yamamoto T; Kojima N; Kikuo K; Fujii T; Sakai Y
    Biotechnol Bioeng; 2008 Apr; 99(6):1472-81. PubMed ID: 17969156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
    Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K
    Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embryonic body culturing in an all-glass microfluidic device with laser-processed 4 μm thick ultra-thin glass sheet filter.
    Yalikun Y; Tanaka N; Hosokawa Y; Iino T; Tanaka Y
    Biomed Microdevices; 2017 Sep; 19(4):85. PubMed ID: 28929304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.