BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 30777029)

  • 1. DeepUbi: a deep learning framework for prediction of ubiquitination sites in proteins.
    Fu H; Yang Y; Wang X; Wang H; Xu Y
    BMC Bioinformatics; 2019 Feb; 20(1):86. PubMed ID: 30777029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating key position and amino acid residue features to identify general and species-specific Ubiquitin conjugation sites.
    Chen X; Qiu JD; Shi SP; Suo SB; Huang SY; Liang RP
    Bioinformatics; 2013 Jul; 29(13):1614-22. PubMed ID: 23626001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New Scheme to Characterize and Identify Protein Ubiquitination Sites.
    Nguyen VN; Huang KY; Huang CH; Lai KR; Lee TY
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(2):393-403. PubMed ID: 26887002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A deep learning method to more accurately recall known lysine acetylation sites.
    Wu M; Yang Y; Wang H; Xu Y
    BMC Bioinformatics; 2019 Jan; 20(1):49. PubMed ID: 30674277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale prediction of protein ubiquitination sites using a multimodal deep architecture.
    He F; Wang R; Li J; Bao L; Xu D; Zhao X
    BMC Syst Biol; 2018 Nov; 12(Suppl 6):109. PubMed ID: 30463553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UbiSite: incorporating two-layered machine learning method with substrate motifs to predict ubiquitin-conjugation site on lysines.
    Huang CH; Su MG; Kao HJ; Jhong JH; Weng SL; Lee TY
    BMC Syst Biol; 2016 Jan; 10 Suppl 1(Suppl 1):6. PubMed ID: 26818456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PrUb-EL: A hybrid framework based on deep learning for identifying ubiquitination sites in Arabidopsis thaliana using ensemble learning strategy.
    Wang H; Li H; Gao W; Xie J
    Anal Biochem; 2022 Dec; 658():114935. PubMed ID: 36206844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Profiling lysine ubiquitination by selective enrichment of ubiquitin remnant-containing peptides.
    Xu G; Deglincerti A; Paige JS; Jaffrey SR
    Methods Mol Biol; 2014; 1174():57-71. PubMed ID: 24947374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UPFPSR: a ubiquitylation predictor for plant through combining sequence information and random forest.
    Yin S; Zheng J; Jia C; Zou Q; Lin Z; Shi H
    Math Biosci Eng; 2022 Jan; 19(1):775-791. PubMed ID: 34903012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic protein ubiquitination in rat brain revealed by antibody-based ubiquitome analysis.
    Na CH; Jones DR; Yang Y; Wang X; Xu Y; Peng J
    J Proteome Res; 2012 Sep; 11(9):4722-32. PubMed ID: 22871113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Qualitative ubiquitome unveils the potential significances of protein lysine ubiquitination in hyphal growth of Aspergillus nidulans.
    Chu XL; Feng MG; Ying SH
    Curr Genet; 2016 Feb; 62(1):191-201. PubMed ID: 26328806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RUBI: rapid proteomic-scale prediction of lysine ubiquitination and factors influencing predictor performance.
    Walsh I; Di Domenico T; Tosatto SC
    Amino Acids; 2014 Apr; 46(4):853-62. PubMed ID: 24363213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational identification of ubiquitination sites in Arabidopsis thaliana using convolutional neural networks.
    Wang X; Yan R; Chen YZ; Wang Y
    Plant Mol Biol; 2021 Apr; 105(6):601-610. PubMed ID: 33527202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fertility-GRU: Identifying Fertility-Related Proteins by Incorporating Deep-Gated Recurrent Units and Original Position-Specific Scoring Matrix Profiles.
    Le NQK
    J Proteome Res; 2019 Sep; 18(9):3503-3511. PubMed ID: 31362508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences.
    Cai B; Jiang X
    BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adapt-Kcr: a novel deep learning framework for accurate prediction of lysine crotonylation sites based on learning embedding features and attention architecture.
    Li Z; Fang J; Wang S; Zhang L; Chen Y; Pian C
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ResSUMO: A Deep Learning Architecture Based on Residual Structure for Prediction of Lysine SUMOylation Sites.
    Zhu Y; Liu Y; Chen Y; Li L
    Cells; 2022 Aug; 11(17):. PubMed ID: 36078053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep-RBPPred: Predicting RNA binding proteins in the proteome scale based on deep learning.
    Zheng J; Zhang X; Zhao X; Tong X; Hong X; Xie J; Liu S
    Sci Rep; 2018 Oct; 8(1):15264. PubMed ID: 30323214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GPS-Uber: a hybrid-learning framework for prediction of general and E3-specific lysine ubiquitination sites.
    Wang C; Tan X; Tang D; Gou Y; Han C; Ning W; Lin S; Zhang W; Chen M; Peng D; Xue Y
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35037020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.