BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30777186)

  • 1. Methods for toxicology studies in echinoderm embryos and larvae.
    Torres-Duarte C; Vines CA; Fairbairn E; Cherr GN
    Methods Cell Biol; 2019; 150():411-426. PubMed ID: 30777186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methods to label, isolate, and image sea urchin small micromeres, the primordial germ cells (PGCs).
    Campanale JP; Hamdoun A; Wessel GM; Su YH; Oulhen N
    Methods Cell Biol; 2019; 150():269-292. PubMed ID: 30777180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Culture of and experiments with sea urchin embryo primary mesenchyme cells.
    Moreno B; DiCorato A; Park A; Mobilia K; Knapp R; Bleher R; Wilke C; Alvares K; Joester D
    Methods Cell Biol; 2019; 150():293-330. PubMed ID: 30777181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryopreservation of sea urchin sperm and early life stages.
    Paredes E; Adams SL; Vignier J
    Methods Cell Biol; 2019; 150():47-69. PubMed ID: 30777189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temnopleurus as an emerging echinoderm model.
    Yaguchi S
    Methods Cell Biol; 2019; 150():71-79. PubMed ID: 30777191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging neural development in embryonic and larval sea urchins.
    Krupke O; Yaguchi S; Yaguchi J; Burke RD
    Methods Mol Biol; 2014; 1128():147-60. PubMed ID: 24567212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Live-cell fluorescence imaging of echinoderm embryos.
    Sepúlveda-Ramírez SP; Toledo-Jacobo L; Garno C; Pal D; Ross C; Ellis A; Shuster CB
    Methods Cell Biol; 2019; 151():379-397. PubMed ID: 30948020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential of veg2 blastomeres to induce endoderm differentiation in sea urchin embryos.
    Iijima M; Amemiya S
    Zoolog Sci; 2002 Jan; 19(1):81-5. PubMed ID: 12025408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lectin uptake and incorporation into the calcitic spicule of sea urchin embryos.
    Mozingo NM
    Zygote; 2015 Jun; 23(3):467-73. PubMed ID: 24735584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sea urchin embryonic cilia.
    Morris RL; Vacquier VD
    Methods Cell Biol; 2019; 150():235-250. PubMed ID: 30777178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurogenesis in sea urchin embryos and the diversity of deuterostome neurogenic mechanisms.
    Garner S; Zysk I; Byrne G; Kramer M; Moller D; Taylor V; Burke RD
    Development; 2016 Jan; 143(2):286-97. PubMed ID: 26511925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesenchymal cell fusion in the sea urchin embryo.
    Hodor PG; Ettensohn CA
    Methods Mol Biol; 2008; 475():315-34. PubMed ID: 18979252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of confocal microscopy to studies of sea urchin embryogenesis.
    Summers RG; Stricker SA; Cameron RA
    Methods Cell Biol; 1993; 38():265-87. PubMed ID: 8267797
    [No Abstract]   [Full Text] [Related]  

  • 14. Estradiol and endocrine disrupting compounds adversely affect development of sea urchin embryos at environmentally relevant concentrations.
    Roepke TA; Snyder MJ; Cherr GN
    Aquat Toxicol; 2005 Jan; 71(2):155-73. PubMed ID: 15642640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A sea urchin in vivo model to evaluate Epithelial-Mesenchymal Transition.
    Romancino DP; Anello L; Lavanco A; Buffa V; Di Bernardo M; Bongiovanni A
    Dev Growth Differ; 2017 Apr; 59(3):141-151. PubMed ID: 28436008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polychrome labeling reveals skeletal triradiate and elongation dynamics and abnormalities in patterning cue-perturbed embryos.
    Descoteaux AE; Zuch DT; Bradham CA
    Dev Biol; 2023 Jun; 498():1-13. PubMed ID: 36948411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A molecular analysis of hyalin--a substrate for cell adhesion in the hyaline layer of the sea urchin embryo.
    Wessel GM; Berg L; Adelson DL; Cannon G; McClay DR
    Dev Biol; 1998 Jan; 193(2):115-26. PubMed ID: 9473317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cost of protein synthesis and energy allocation during development of antarctic sea urchin embryos and larvae.
    Pace DA; Manahan DT
    Biol Bull; 2007 Apr; 212(2):115-29. PubMed ID: 17438204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restitution of whole larvae from disaggregated cells of sea urchin embryos.
    GIUDICE G
    Dev Biol; 1962 Dec; 5():402-11. PubMed ID: 13948261
    [No Abstract]   [Full Text] [Related]  

  • 20. Migratory and invasive behavior of pigment cells in normal and animalized sea urchin embryos.
    Gibson AW; Burke RD
    Exp Cell Res; 1987 Dec; 173(2):546-57. PubMed ID: 3691675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.