BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30777186)

  • 41. Towards a total analysis of polyribosome-associated ribonucleoprotein particles of sea urchin embryos.
    Ruzdijić S; Glisin V
    Biochim Biophys Acta; 1972 May; 269(3):441-9. PubMed ID: 5039543
    [No Abstract]   [Full Text] [Related]  

  • 42. Studies on the cellular basis of morphogenesis in the sea urchin embryo. Directed movements of primary mesenchvme cells in normal and vegetalized larvae.
    GUSTAFSON T; WOLPERT L
    Exp Cell Res; 1961 Jun; 24():64-79. PubMed ID: 13709960
    [No Abstract]   [Full Text] [Related]  

  • 43. PI3K inhibitors block skeletogenesis but not patterning in sea urchin embryos.
    Bradham CA; Miranda EL; McClay DR
    Dev Dyn; 2004 Apr; 229(4):713-21. PubMed ID: 15042695
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The sea urchin larva, a suitable model for biomineralisation studies in space (IML-2 ESA Biorack experiment '24-F urchin').
    Marthy HJ; Gasset G; Tixador R; Schatt P; Eche B; Dessommes A; Giacomini T; Tap G; Gorand D
    J Biotechnol; 1996 Jun; 47(2-3):167-77. PubMed ID: 11536758
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Isolation of chromatin bearing nascent RNA from nuclei of sea urchin embryos.
    Wilt FH; Ekenberg E
    Biochem Biophys Res Commun; 1971 Aug; 44(4):831-6. PubMed ID: 5125229
    [No Abstract]   [Full Text] [Related]  

  • 46. Apoptosis in sea urchin oocytes, eggs, and early embryos.
    Voronina E; Wessel GM
    Mol Reprod Dev; 2001 Dec; 60(4):553-61. PubMed ID: 11746966
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Manganese interferes with calcium, perturbs ERK signaling, and produces embryos with no skeleton.
    Pinsino A; Roccheri MC; Costa C; Matranga V
    Toxicol Sci; 2011 Sep; 123(1):217-30. PubMed ID: 21659617
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microaquaria for time-lapse cinematographic studies of morphogenesis in swimming larvae and observations on sea urchin gastrulation.
    GUSTAFSON T; KINNANDER H
    Exp Cell Res; 1956 Aug; 11(1):36-51. PubMed ID: 13356825
    [No Abstract]   [Full Text] [Related]  

  • 49. Determination of cell fate in sea urchin embryos.
    Livingston BT; Wilt FH
    Bioessays; 1990 Mar; 12(3):115-9. PubMed ID: 2182005
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Perturbations to the hedgehog pathway in sea urchin embryos.
    Warner JF; McClay DR
    Methods Mol Biol; 2014; 1128():211-21. PubMed ID: 24567217
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Light-induced, spatiotemporal control of protein in the developing embryo of the sea urchin.
    Wavreil FDM; Poon J; Wessel GM; Yajima M
    Dev Biol; 2021 Oct; 478():13-24. PubMed ID: 34147471
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mitochondrial gradients and p38 activity in early sea urchin embryos.
    Modell JW; Bradham CA
    Mol Reprod Dev; 2011 Apr; 78(4):225. PubMed ID: 21387455
    [No Abstract]   [Full Text] [Related]  

  • 53. Effects of retinoic acid and dimethylsulfoxide on the morphogenesis of the sea urchin embryo.
    Sciarrino S; Matranga V
    Cell Biol Int; 1995 Aug; 19(8):675-80. PubMed ID: 7550075
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sea urchin embryos exposed to thalidomide during early cleavage exhibit abnormal morphogenesis later in development.
    Reichard-Brown JL; Spinner H; McBride K
    Birth Defects Res B Dev Reprod Toxicol; 2009 Dec; 86(6):496-505. PubMed ID: 20025048
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Advances in the cryopreservation of sea-urchin embryos: Potential application in marine water quality assessment.
    Bellas J; Paredes E
    Cryobiology; 2011 Jun; 62(3):174-80. PubMed ID: 21338597
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Morphogenetic mechanisms of coelom formation in the direct-developing sea urchin Heliocidaris erythrogramma.
    Smith MS; Collins S; Raff RA
    Dev Genes Evol; 2009 Jan; 219(1):21-9. PubMed ID: 18958491
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cadmium induces an apoptotic response in sea urchin embryos.
    Agnello M; Filosto S; Scudiero R; Rinaldi AM; Roccheri MC
    Cell Stress Chaperones; 2007; 12(1):44-50. PubMed ID: 17441506
    [TBL] [Abstract][Full Text] [Related]  

  • 58. KirrelL, a member of the Ig-domain superfamily of adhesion proteins, is essential for fusion of primary mesenchyme cells in the sea urchin embryo.
    Ettensohn CA; Dey D
    Dev Biol; 2017 Jan; 421(2):258-270. PubMed ID: 27866905
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assessment of the toxic effect exerted by fluorescent pseudomonads on embryos and larvae of the sea urchin Strongylocentrotus nudus.
    Beleneva IA; Shamshurina EV; Eliseikina MG
    Ecotoxicol Environ Saf; 2015 May; 115():263-71. PubMed ID: 25728358
    [TBL] [Abstract][Full Text] [Related]  

  • 60. TGF-β sensu stricto signaling regulates skeletal morphogenesis in the sea urchin embryo.
    Sun Z; Ettensohn CA
    Dev Biol; 2017 Jan; 421(2):149-160. PubMed ID: 27955944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.