BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30777186)

  • 61. Sea urchin maternal and embryonic U1 RNAs are spatially segregated in early embryos.
    Nash MA; Kozak SE; Angerer LM; Angerer RC; Schatten H; Schatten G; Marzluff WF
    J Cell Biol; 1987 May; 104(5):1133-42. PubMed ID: 3553205
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Cilia are required for asymmetric nodal induction in the sea urchin embryo.
    Tisler M; Wetzel F; Mantino S; Kremnyov S; Thumberger T; Schweickert A; Blum M; Vick P
    BMC Dev Biol; 2016 Aug; 16(1):28. PubMed ID: 27553781
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effects of the toxic benthic dinoflagellate Ostreopsis cf. ovata on fertilization and early development of the sea urchin Lytechinus variegatus.
    Neves RAF; Contins M; Nascimento SM
    Mar Environ Res; 2018 Apr; 135():11-17. PubMed ID: 29402518
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Origin and behaviour of pigment cells in sea urchin embryos.
    Kominami T
    Zygote; 2000; 8 Suppl 1():S42-3. PubMed ID: 11191304
    [No Abstract]   [Full Text] [Related]  

  • 65. Sharp dose- and time-dependent toxicity of mercuric chloride at the cellular level in sea urchin embryos.
    Marc J; Maguer C; Bellé R; Mulner-Lorillon O
    Arch Toxicol; 2002 Jul; 76(7):388-91. PubMed ID: 12111002
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Methods for imaging individual cilia in living echinoid embryos.
    Morris RL; Pope HW; Sholi AN; Williams LM; Ettinger CR; Beacham GM; Shintaku T; Abbott ZD; Doherty EM
    Methods Cell Biol; 2015; 127():223-41. PubMed ID: 25837394
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Apoptosis: Focus on sea urchin development.
    Agnello M; Roccheri MC
    Apoptosis; 2010 Mar; 15(3):322-30. PubMed ID: 19876739
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Multidisciplinary screening of toxicity induced by silica nanoparticles during sea urchin development.
    Gambardella C; Morgana S; Bari GD; Ramoino P; Bramini M; Diaspro A; Falugi C; Faimali M
    Chemosphere; 2015 Nov; 139():486-95. PubMed ID: 26291678
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The painted sea urchin, Lytechinus pictus, as a genetically-enabled developmental model.
    Nesbit KT; Fleming T; Batzel G; Pouv A; Rosenblatt HD; Pace DA; Hamdoun A; Lyons DC
    Methods Cell Biol; 2019; 150():105-123. PubMed ID: 30777173
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Lipid peroxidation in embryos and larva of sea urchin Strongylocentrotus intermedius].
    Luk'ianova ON; Annikova LV; Deridovich II
    Zh Evol Biokhim Fiziol; 2000; 36(2):88-91. PubMed ID: 10925845
    [No Abstract]   [Full Text] [Related]  

  • 71. Role for platelet-derived growth factor-like and epidermal growth factor-like signaling pathways in gastrulation and spiculogenesis in the Lytechinus sea urchin embryo.
    Ramachandran RK; Govindarajan V; Seid CA; Patil S; Tomlinson CR
    Dev Dyn; 1995 Sep; 204(1):77-88. PubMed ID: 8563028
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Gene regulatory networks for ectoderm specification in sea urchin embryos.
    Su YH
    Biochim Biophys Acta; 2009 Apr; 1789(4):261-7. PubMed ID: 19429544
    [TBL] [Abstract][Full Text] [Related]  

  • 73. H(+)/K(+) ATPase activity is required for biomineralization in sea urchin embryos.
    Schatzberg D; Lawton M; Hadyniak SE; Ross EJ; Carney T; Beane WS; Levin M; Bradham CA
    Dev Biol; 2015 Oct; 406(2):259-70. PubMed ID: 26282894
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Differential distribution of ABCB1 and ABCC1 transporters in sea urchin pluteus larvae.
    Torrezan E; Figueiredo RC; Marques-Santos LF
    Mol Reprod Dev; 2012 Aug; 79(8):501. PubMed ID: 22753392
    [No Abstract]   [Full Text] [Related]  

  • 75. Competence of the animal cap to react with the inductive signal from micromere descendants in the hatching blastula stage of echinoid embryos.
    Ishizuka Y; Amemiya S
    Zygote; 2000; 8 Suppl 1():S81. PubMed ID: 11191333
    [No Abstract]   [Full Text] [Related]  

  • 76. Inhibition by aphidicolin of cell cycle progression and DNA replication in sea urchin embryos.
    Ikegami S; Amemiya S; Oguro M; Nagano H; Mano Y
    J Cell Physiol; 1979 Sep; 100(3):439-44. PubMed ID: 489668
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Initial stages of calcium uptake and mineral deposition in sea urchin embryos.
    Vidavsky N; Addadi S; Mahamid J; Shimoni E; Ben-Ezra D; Shpigel M; Weiner S; Addadi L
    Proc Natl Acad Sci U S A; 2014 Jan; 111(1):39-44. PubMed ID: 24344263
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Comparative toxicity of seven rare earth elements in sea urchin early life stages.
    Trifuoggi M; Pagano G; Guida M; Palumbo A; Siciliano A; Gravina M; Lyons DM; Burić P; Levak M; Thomas PJ; Giarra A; Oral R
    Environ Sci Pollut Res Int; 2017 Sep; 24(25):20803-20810. PubMed ID: 28721613
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Differential cellular compartmentalization of the nuclear receptor SpSHR2 splicing variants in early sea urchin embryos.
    Kontrogianni-Konstantopoulos A; Flytzanis CN
    Mol Reprod Dev; 2001 Oct; 60(2):147-57. PubMed ID: 11553912
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Procuring animals and culturing of eggs and embryos.
    Adams NL; Heyland A; Rice LL; Foltz KR
    Methods Cell Biol; 2019; 150():3-46. PubMed ID: 30777182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.