These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30777423)

  • 21. Structure and Function of Redox-Sensitive Superfolder Green Fluorescent Protein Variant.
    Heimsch KC; Gertzen CGW; Schuh AK; Nietzel T; Rahlfs S; Przyborski JM; Gohlke H; Schwarzländer M; Becker K; Fritz-Wolf K
    Antioxid Redox Signal; 2022 Jul; 37(1-3):1-18. PubMed ID: 35072524
    [No Abstract]   [Full Text] [Related]  

  • 22. Ratiometric biosensors based on dimerization-dependent fluorescent protein exchange.
    Ding Y; Li J; Enterina JR; Shen Y; Zhang I; Tewson PH; Mo GC; Zhang J; Quinn AM; Hughes TE; Maysinger D; Alford SC; Zhang Y; Campbell RE
    Nat Methods; 2015 Mar; 12(3):195-8. PubMed ID: 25622108
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simultaneous Detection of Four Cell Cycle Phases with Live Fluorescence Imaging.
    Bajar BT; Lin MZ
    Methods Mol Biol; 2021; 2274():25-35. PubMed ID: 34050459
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Redesign of genetically encoded biosensors for monitoring mitochondrial redox status in a broad range of model eukaryotes.
    Albrecht SC; Sobotta MC; Bausewein D; Aller I; Hell R; Dick TP; Meyer AJ
    J Biomol Screen; 2014 Mar; 19(3):379-86. PubMed ID: 23954927
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A ratiometric fluorescent probe for bioimaging and biosensing of HBrO in mitochondria upon oxidative stress.
    Huang H; Tian Y
    Chem Commun (Camb); 2018 Oct; 54(86):12198-12201. PubMed ID: 30306159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extending roGFP Emission via Förster-Type Resonance Energy Transfer Relay Enables Simultaneous Dual Compartment Ratiometric Redox Imaging in Live Cells.
    Norcross S; Trull KJ; Snaider J; Doan S; Tat K; Huang L; Tantama M
    ACS Sens; 2017 Nov; 2(11):1721-1729. PubMed ID: 29072071
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetically encoded redox sensors.
    Chiu WK; Towheed A; Palladino MJ
    Methods Enzymol; 2014; 542():263-87. PubMed ID: 24862271
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redox Imaging Using Cardiac Myocyte-Specific Transgenic Biosensor Mice.
    Swain L; Kesemeyer A; Meyer-Roxlau S; Vettel C; Zieseniss A; Güntsch A; Jatho A; Becker A; Nanadikar MS; Morgan B; Dennerlein S; Shah AM; El-Armouche A; Nikolaev VO; Katschinski DM
    Circ Res; 2016 Oct; 119(9):1004-1016. PubMed ID: 27553648
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Real-time monitoring of the in vivo redox state transition using the ratiometric redox state sensor protein FROG/B.
    Sugiura K; Mihara S; Fu N; Hisabori T
    Proc Natl Acad Sci U S A; 2020 Jul; 117(27):16019-16026. PubMed ID: 32576684
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorescent protein-based redox probes.
    Meyer AJ; Dick TP
    Antioxid Redox Signal; 2010 Sep; 13(5):621-50. PubMed ID: 20088706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A general strategy to red-shift green fluorescent protein-based biosensors.
    Zhang S; Ai HW
    Nat Chem Biol; 2020 Dec; 16(12):1434-1439. PubMed ID: 32929278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of Cellular Oxidation using a Subcellular Compartment-Specific Redox-Sensitive Green Fluorescent Protein.
    Tascioglu Aliyev A; LoBianco F; Krager KJ; Aykin-Burns N
    J Vis Exp; 2020 Jun; (160):. PubMed ID: 32628158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real-Time Imaging of the Bacillithiol Redox Potential in the Human Pathogen Staphylococcus aureus Using a Genetically Encoded Bacilliredoxin-Fused Redox Biosensor.
    Loi VV; Harms M; Müller M; Huyen NTT; Hamilton CJ; Hochgräfe F; Pané-Farré J; Antelmann H
    Antioxid Redox Signal; 2017 May; 26(15):835-848. PubMed ID: 27462976
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative Monitoring of Subcellular Redox Dynamics in Living Mammalian Cells Using RoGFP2-Based Probes.
    Lismont C; Walton PA; Fransen M
    Methods Mol Biol; 2017; 1595():151-164. PubMed ID: 28409459
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A genetically encoded fluorescent biosensor for detecting nitroreductase activity in living cancer cells.
    Xu F; Fan M; Kang S; Duan X
    Anal Chim Acta; 2019 Dec; 1088():131-136. PubMed ID: 31623708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving redox sensitivity of roGFP1 by incorporation of selenocysteine at position 147.
    Stanford KR; Ajmo JM; Bahia PK; Hadley SH; Taylor-Clark TE
    BMC Res Notes; 2018 Nov; 11(1):827. PubMed ID: 30466490
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Designing, construction and characterization of genetically encoded FRET-based nanosensor for real time monitoring of lysine flux in living cells.
    Ameen S; Ahmad M; Mohsin M; Qureshi MI; Ibrahim MM; Abdin MZ; Ahmad A
    J Nanobiotechnology; 2016 Jun; 14(1):49. PubMed ID: 27334743
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A redox-sensitive yellow fluorescent protein sensor for monitoring nuclear glutathione redox dynamics.
    Banach-Latapy A; Dardalhon M; Huang ME
    Methods Mol Biol; 2015; 1228():159-69. PubMed ID: 25311129
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro and in vivo imaging of peroxynitrite by a ratiometric boronate-based fluorescent probe.
    Palanisamy S; Wu PY; Wu SC; Chen YJ; Tzou SC; Wang CH; Chen CY; Wang YM
    Biosens Bioelectron; 2017 May; 91():849-856. PubMed ID: 28157659
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Imaging Approaches to Assessments of Toxicological Oxidative Stress Using Genetically-encoded Fluorogenic Sensors.
    Corteselli EM; Samet JM; Gibbs-Flournoy EA
    J Vis Exp; 2018 Feb; (132):. PubMed ID: 29443110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.