These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30777424)

  • 1. Role of Stabilizing Surfactants on Capacitance, Charge, and Ion Transport in Organic Nanoparticle-Based Electronic Devices.
    Ameri M; Al-Mudhaffer MF; Almyahi F; Fardell GC; Marks M; Al-Ahmad A; Fahy A; Andersen T; Elkington DC; Feron K; Dickinson M; Samavat F; Dastoor PC; Griffith MJ
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):10074-10088. PubMed ID: 30777424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The curious case of ion migration in solid-state and liquid electrolyte-based perovskite devices: unveiling the role of charge accumulation and extraction at the interfaces.
    Srivastava P; Kumar R; Bag M
    Phys Chem Chem Phys; 2021 May; 23(18):10936-10945. PubMed ID: 33912893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface Functionalization of Metal Nanoparticles by Conjugated Metal-Ligand Interfacial Bonds: Impacts on Intraparticle Charge Transfer.
    Hu P; Chen L; Kang X; Chen S
    Acc Chem Res; 2016; 49(10):2251-2260. PubMed ID: 27690382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. n-Type Ionic-Organic Electronic Ratchets for Energy Harvesting.
    Liao K; Collins SD; Brus VV; Mikhnenko OV; Hu Y; Phan H; Nguyen TQ
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1081-1087. PubMed ID: 30480989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying mobile ions and electronic defects in perovskite-based devices with temperature-dependent capacitance measurements: Frequency vs time domain.
    Futscher MH; Gangishetty MK; Congreve DN; Ehrler B
    J Chem Phys; 2020 Jan; 152(4):044202. PubMed ID: 32007073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impedance Spectroscopy of Ionic Ligand-Modulated Charge Transport of Gold Nanoparticle Films.
    Yu X; Malvankar N; Landis R; Eymur S; Miranda OR; Rotello VM
    Small; 2015 Aug; 11(31):3814-21. PubMed ID: 25919594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic and electrochemical nature of liquid-gated electric-double-layer transistors based on oxide semiconductors.
    Yuan H; Shimotani H; Ye J; Yoon S; Aliah H; Tsukazaki A; Kawasaki M; Iwasa Y
    J Am Chem Soc; 2010 Dec; 132(51):18402-7. PubMed ID: 21141862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric-double-layer field-effect transistors with ionic liquids.
    Fujimoto T; Awaga K
    Phys Chem Chem Phys; 2013 Jun; 15(23):8983-9006. PubMed ID: 23665738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling transport and chemical functionality of magnetic nanoparticles.
    Latham AH; Williams ME
    Acc Chem Res; 2008 Mar; 41(3):411-20. PubMed ID: 18251514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibrational spectroscopy of electronic processes in emerging photovoltaic materials.
    Jeong KS; Pensack RD; Asbury JB
    Acc Chem Res; 2013 Jul; 46(7):1538-47. PubMed ID: 23514085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic behavior of organic-inorganic metal halide perovskite based metal-oxide-semiconductor capacitors.
    Wang Y; Zhang Y; Pang T; Xu J; Hu Z; Zhu Y; Tang X; Luan S; Jia R
    Phys Chem Chem Phys; 2017 May; 19(20):13002-13009. PubMed ID: 28480938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferrocene-terminated monolayers covalently bound to hydrogen-terminated silicon surfaces. Toward the development of charge storage and communication devices.
    Fabre B
    Acc Chem Res; 2010 Dec; 43(12):1509-18. PubMed ID: 20949977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double-layer in ionic liquids: paradigm change?
    Kornyshev AA
    J Phys Chem B; 2007 May; 111(20):5545-57. PubMed ID: 17469864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interface Electrode Morphology Effect on Carrier Concentration and Trap Defect Density in an Organic Photovoltaic Device.
    Kesavan AV; Rao AD; Ramamurthy PC
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28774-28784. PubMed ID: 28749650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conjugated Polymer Zwitterions: Efficient Interlayer Materials in Organic Electronics.
    Liu Y; Duzhko VV; Page ZA; Emrick T; Russell TP
    Acc Chem Res; 2016 Nov; 49(11):2478-2488. PubMed ID: 27783502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Internal Electric Field Modulation in Molecular Electronic Devices by Atmosphere and Mobile Ions.
    Chandra Mondal P; Tefashe UM; McCreery RL
    J Am Chem Soc; 2018 Jun; 140(23):7239-7247. PubMed ID: 29771503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of Mobile Ion Densities in Halide Perovskites via Low-Frequency Capacitance and Charge Extraction Techniques.
    Diekmann J; Peña-Camargo F; Tokmoldin N; Thiesbrummel J; Warby J; Gutierrez-Partida E; Shah S; Neher D; Stolterfoht M
    J Phys Chem Lett; 2023 May; 14(18):4200-4210. PubMed ID: 37115820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mini-Review: Mixed Ionic-Electronic Charge Carrier Localization and Transport in Hybrid Organic-Inorganic Nanomaterials.
    Romero M; Mombrú D; Pignanelli F; Faccio R; Mombrú AW
    Front Chem; 2020; 8():537. PubMed ID: 32760697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the complex interaction between hydrophilic nanoparticles and ionic surfactants at the liquid/air interface.
    Jin J; Li X; Geng J; Jing D
    Phys Chem Chem Phys; 2018 Jun; 20(22):15223-15235. PubMed ID: 29789835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.