These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 30777701)

  • 1. Enhancement of fermentative H
    Qi N; Zhao X; Liang C; Hu X; Ye S; Zhang Z; Li X
    Bioresour Technol; 2019 May; 280():502-504. PubMed ID: 30777701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristic and calculation on the co-contribution in the bio-H
    Qi N; Wang Y; Zhao X; Han X; Dong L; Hu X
    Environ Res; 2022 Sep; 212(Pt A):113169. PubMed ID: 35358542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of biohydrogen recovery enhancement from peanut shell by C. guangxiense: Temperature pretreatment ranges from -80 to 100 °C.
    Qi N; Hu X; Xin X; Ye S; Fu Z; Zhao X
    Bioresour Technol; 2020 May; 304():123026. PubMed ID: 32127244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen.
    Dahiya S; Sarkar O; Swamy YV; Venkata Mohan S
    Bioresour Technol; 2015 Apr; 182():103-113. PubMed ID: 25682230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of ferrihydrite nanorods on fermentative hydrogen production by Clostridium pasteurianum.
    Zhang Y; Xiao L; Wang S; Liu F
    Bioresour Technol; 2019 Jul; 283():308-315. PubMed ID: 30921584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acidogenic spent wash valorization through polyhydroxyalkanoate (PHA) synthesis coupled with fermentative biohydrogen production.
    Amulya K; Reddy MV; Mohan SV
    Bioresour Technol; 2014 Apr; 158():336-42. PubMed ID: 24637295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of hydrogen, ethanol and volatile fatty acids from the seaweed carbohydrate mannitol.
    Xia A; Jacob A; Herrmann C; Tabassum MR; Murphy JD
    Bioresour Technol; 2015 Oct; 193():488-97. PubMed ID: 26163759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing fermentative hydrogen production from sucrose.
    Perera KR; Nirmalakhandan N
    Bioresour Technol; 2010 Dec; 101(23):9137-43. PubMed ID: 20674339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of bio-hydrogen yield and pH stability in photo fermentation process using dark fermentation effluent as succedaneum.
    Li Y; Zhang Z; Zhang Q; Tahir N; Jing Y; Xia C; Zhu S; Zhang X
    Bioresour Technol; 2020 Feb; 297():122504. PubMed ID: 31813819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biohydrogen production from sugarcane bagasse hydrolysate: effects of pH, S/X, Fe
    Reddy K; Nasr M; Kumari S; Kumar S; Gupta SK; Enitan AM; Bux F
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):8790-8804. PubMed ID: 28213710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing fermentative hydrogen production with the removal of volatile fatty acids by electrodialysis.
    Wei P; Xia A; Liao Q; Sun C; Huang Y; Fu Q; Zhu X; Lin R
    Bioresour Technol; 2018 Sep; 263():437-443. PubMed ID: 29772505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fermentative H
    Akhlaghi M; Boni MR; Polettini A; Pomi R; Rossi A; De Gioannis G; Muntoni A; Spiga D
    Bioresour Technol; 2019 Mar; 276():349-360. PubMed ID: 30654168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of metabolism using stoichiometry in fermentative biohydrogen.
    Lee HS; Rittmann BE
    Biotechnol Bioeng; 2009 Feb; 102(3):749-58. PubMed ID: 18828179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of carbonate on anaerobic acidogenesis and fermentative hydrogen production from glucose using leachate as supplementary culture under alkaline conditions.
    Liu Q; Zhang XL; Jun Z; Zhao AH; Chen SP; Liu F; Tai J; Liu JY; Qian GR
    Bioresour Technol; 2012 Jun; 113():37-43. PubMed ID: 22445267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Augmentation of bacterial homeostasis by regulating in situ buffer capacity: Significance of total dissolved salts over acidogenic metabolism.
    Venkata Mohan S; Srikanth S; Nikhil GN
    Bioresour Technol; 2017 Feb; 225():34-39. PubMed ID: 27875766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of pH control on biohydrogen production by single stage hybrid dark- and photo-fermentation.
    Zagrodnik R; Laniecki M
    Bioresour Technol; 2015 Oct; 194():187-95. PubMed ID: 26196419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteolysis, fermentation efficiency, and in vitro ruminal digestion of peanut stover ensiled with raw or heated corn.
    Yang CM
    J Dairy Sci; 2005 Aug; 88(8):2903-10. PubMed ID: 16027205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of pH and substrate concentrations on dark fermentative biohydrogen production from xylose by extreme thermophilic mixed culture.
    Qiu C; Shi P; Xiao S; Sun L
    World J Microbiol Biotechnol; 2017 Jan; 33(1):7. PubMed ID: 27858340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen and volatile fatty acid production during fermentation of cellulosic substrates by a thermophilic consortium at 50 and 60 °C.
    Carver SM; Nelson MC; Lepistö R; Yu Z; Tuovinen OH
    Bioresour Technol; 2012 Jan; 104():424-31. PubMed ID: 22133607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved laccase production by Funalia trogii in absorbent fermentation with nutrient carrier.
    Li G; Liu X; Yuan L
    J Biosci Bioeng; 2017 Oct; 124(4):381-385. PubMed ID: 28545839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.