These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 30777747)

  • 1. Chemical Prelithiation of Negative Electrodes in Ambient Air for Advanced Lithium-Ion Batteries.
    Wang G; Li F; Liu D; Zheng D; Luo Y; Qu D; Ding T; Qu D
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):8699-8703. PubMed ID: 30777747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Li-Metal-Free Prelithiation of Si-Based Negative Electrodes for Full Li-Ion Batteries.
    Zhou H; Wang X; Chen D
    ChemSusChem; 2015 Aug; 8(16):2737-44. PubMed ID: 26216592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and Controllable Prelithiation of Hard Carbon Anodes for Lithium-Ion Batteries.
    Zhang X; Qu H; Ji W; Zheng D; Ding T; Abegglen C; Qiu D; Qu D
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11589-11599. PubMed ID: 32056422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ambient-Air Stable Lithiated Anode for Rechargeable Li-Ion Batteries with High Energy Density.
    Cao Z; Xu P; Zhai H; Du S; Mandal J; Dontigny M; Zaghib K; Yang Y
    Nano Lett; 2016 Nov; 16(11):7235-7240. PubMed ID: 27696883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulating the Solvation Structure of Li
    He W; Xu H; Chen Z; Long J; Zhang J; Jiang J; Dou H; Zhang X
    Nanomicro Lett; 2023 Apr; 15(1):107. PubMed ID: 37071270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Li
    Pan Y; Qi X; Du H; Ji Y; Yang D; Zhu Z; Yang Y; Qie L; Huang Y
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):18763-18770. PubMed ID: 37036946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Practical Prelithiation of 4.5 V LiCoO
    Zhao X; Yi R; Zheng L; Liu Y; Li Z; Zeng L; Shen Y; Lu W; Chen L
    Small; 2022 Mar; 18(9):e2106394. PubMed ID: 34908238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial Solid Electrolyte Interphase-Protected LixSi Nanoparticles: An Efficient and Stable Prelithiation Reagent for Lithium-Ion Batteries.
    Zhao J; Lu Z; Wang H; Liu W; Lee HW; Yan K; Zhuo D; Lin D; Liu N; Cui Y
    J Am Chem Soc; 2015 Jul; 137(26):8372-5. PubMed ID: 26091423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Coulombic-Efficiency Carbon/Li Clusters Composite Anode without Precycling or Prelithiation.
    Tian R; Duan H; Guo Y; Li H; Liu H
    Small; 2018 Jul; ():e1802226. PubMed ID: 30028578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Practical Implementation of Magnetite-Based Conversion-Type Negative Electrodes via Electrochemical Prelithiation.
    Kopuklu BB; Esen E; Gomez-Martin A; Winter M; Placke T; Schmuch R; Gursel SA; Yurum A
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):34665-34677. PubMed ID: 35880313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Raw Mixed Conducting Interphase Affords Effective Prelithiation in Working Batteries.
    Yue XY; Yao YX; Zhang J; Li Z; Yang SY; Li XL; Yan C; Zhang Q
    Angew Chem Int Ed Engl; 2022 Jul; 61(29):e202205697. PubMed ID: 35532047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecularly Tailored Lithium-Arene Complex Enables Chemical Prelithiation of High-Capacity Lithium-Ion Battery Anodes.
    Jang J; Kang I; Choi J; Jeong H; Yi KW; Hong J; Lee M
    Angew Chem Int Ed Engl; 2020 Aug; 59(34):14473-14480. PubMed ID: 32400120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding of the Mechanism Enables Controllable Chemical Prelithiation of Anode Materials for Lithium-Ion Batteries.
    Yue H; Zhang S; Feng T; Chen C; Zhou H; Xu Z; Wu M
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53996-54004. PubMed ID: 34732046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemically Prelithiated Hard-Carbon Anode for High Power and High Capacity Li-Ion Batteries.
    Shen Y; Qian J; Yang H; Zhong F; Ai X
    Small; 2020 Feb; 16(7):e1907602. PubMed ID: 31990451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Simple Prelithiation Strategy To Build a High-Rate and Long-Life Lithium-Ion Battery with Improved Low-Temperature Performance.
    Liu Y; Yang B; Dong X; Wang Y; Xia Y
    Angew Chem Int Ed Engl; 2017 Dec; 56(52):16606-16610. PubMed ID: 29135065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metallurgically lithiated SiOx anode with high capacity and ambient air compatibility.
    Zhao J; Lee HW; Sun J; Yan K; Liu Y; Liu W; Lu Z; Lin D; Zhou G; Cui Y
    Proc Natl Acad Sci U S A; 2016 Jul; 113(27):7408-13. PubMed ID: 27313206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents.
    Zhao J; Lu Z; Liu N; Lee HW; McDowell MT; Cui Y
    Nat Commun; 2014 Oct; 5():5088. PubMed ID: 25277107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Performance Lithiated SiO
    Meng Q; Li G; Yue J; Xu Q; Yin YX; Guo YG
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32062-32068. PubMed ID: 31393103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prelithiation Bridges the Gap for Developing Next-Generation Lithium-Ion Batteries/Capacitors.
    Li F; Cao Y; Wu W; Wang G; Qu D
    Small Methods; 2022 Jul; 6(7):e2200411. PubMed ID: 35680608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Prelithiation Separator for Compensating the Initial Capacity Loss of Lithium-Ion Batteries.
    Rao Z; Wu J; He B; Chen W; Wang H; Fu Q; Huang Y
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38194-38201. PubMed ID: 34342445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.