These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30778274)

  • 1. Friction between a polyethylene pin and a microtextured CoCrMo disc, and its correlation to polyethylene wear, as a function of sliding velocity and contact pressure, in the context of metal-on-polyethylene prosthetic hip implants.
    Borjali A; Monson K; Raeymaekers B
    Tribol Int; 2018 Nov; 127():568-574. PubMed ID: 30778274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microtextured CoCrMo alloy for use in metal-on-polyethylene prosthetic joint bearings: multi-directional wear and corrosion measurements.
    Langhorn J; Borjali A; Hippensteel E; Nelson W; Raeymaekers B
    Tribol Int; 2018 Aug; 124():178-183. PubMed ID: 30778273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using a patterned microtexture to reduce polyethylene wear in metal-on-polyethylene prosthetic bearing couples.
    Borjali A; Langhorn J; Monson K; Raeymaekers B
    Wear; 2017 Dec; 392-393():77-83. PubMed ID: 29358840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A patterned microtexture to reduce friction and increase longevity of prosthetic hip joints.
    Chyr A; Qiu M; Speltz J; Jacobsen RL; Sanders AP; Raeymaekers B
    Wear; 2014 Jul; 315(1-2):51-57. PubMed ID: 25013240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of scratch resistance of cobalt chromium alloy bearing surface, articulating against ultra-high molecular weight polyethylene, due to third-body wear particles.
    Mirghany M; Jin ZM
    Proc Inst Mech Eng H; 2004; 218(1):41-50. PubMed ID: 14982345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the polyethylene wear rate in pin-on-disc experiments in the context of prosthetic hip implants: deriving a data-driven model using machine learning methods.
    Borjali A; Monson K; Raeymaekers B
    Tribol Int; 2019 May; 133():101-110. PubMed ID: 33100474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Texturing of Prosthetic Hip Implant Bearing Surfaces: A Review.
    Allen Q; Raeymaekers B
    J Tribol; 2021 Apr; 143(4):040801. PubMed ID: 34168396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Friction of composite cushion bearings for total knee joint replacements under adverse lubrication conditions.
    Stewart T; Jin ZM; Fisher J
    Proc Inst Mech Eng H; 1997; 211(6):451-65. PubMed ID: 9509883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of wear of bearing surfaces on elastohydrodynamic lubrication of metal-on-metal hip implants.
    Liu F; Jin ZM; Hirt F; Rieker C; Roberts P; Grigoris P
    Proc Inst Mech Eng H; 2005 Sep; 219(5):319-28. PubMed ID: 16225148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wear and deformation of ceramic-on-polyethylene total hip replacements with joint laxity and swing phase microseparation.
    Williams S; Butterfield M; Stewart T; Ingham E; Stone M; Fisher J
    Proc Inst Mech Eng H; 2003; 217(2):147-53. PubMed ID: 12666782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of contact pressure on wear and friction of ultra-high molecular weight polyethylene in multidirectional sliding.
    Saikko V
    Proc Inst Mech Eng H; 2006 Oct; 220(7):723-31. PubMed ID: 17117762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Friction, lubrication, and polymer transfer between UHMWPE and CoCrMo hip-implant materials: a fluorescence microscopy study.
    Crockett R; Roba M; Naka M; Gasser B; Delfosse D; Frauchiger V; Spencer ND
    J Biomed Mater Res A; 2009 Jun; 89(4):1011-8. PubMed ID: 18478550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of low-friction ion-treated femoral heads on polyethylene wear rates.
    Maruyama M; Capello WN; D'Antonio JA; Jaffe WL; Bierbaum BE
    Clin Orthop Relat Res; 2000 Jan; (370):183-91. PubMed ID: 10660712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The degree of peri-implant osteolysis induced by PEEK, CoCrMo, and HXLPE wear particles: a study based on a porous Ti6Al4V implant in a rabbit model.
    Du Z; Zhu Z; Wang Y
    J Orthop Surg Res; 2018 Jan; 13(1):23. PubMed ID: 29386035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effect of Texture Floor Profile on the Lubricant Film Thickness in a Textured Hard-On-Soft Bearing With Relevance to Prosthetic Hip Implants.
    Allen Q; Raeymaekers B
    J Tribol; 2021 Feb; 143(2):021801. PubMed ID: 34168395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo comparison of hip separation after metal-on-metal or metal-on-polyethylene total hip arthroplasty.
    Komistek RD; Dennis DA; Ochoa JA; Haas BD; Hammill C
    J Bone Joint Surg Am; 2002 Oct; 84(10):1836-41. PubMed ID: 12377916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing lubricated sliding wear properties of HDPE/UHMWPE hybrid bionanocomposite.
    Sharma V; Gupta RK; Kailas SV; Basu B
    J Biomater Appl; 2022 Aug; 37(2):204-218. PubMed ID: 35502987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of friction and lubrication of different hip prostheses.
    Scholes SC; Unsworth A
    Proc Inst Mech Eng H; 2000; 214(1):49-57. PubMed ID: 10718050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of friction and clearance on kinematics and contact mechanics of dual mobility hip implant.
    Gao Y; Chai W; Wang L; Wang M; Jin Z
    Proc Inst Mech Eng H; 2016 Jan; 230(1):39-49. PubMed ID: 26586527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High frequency circular translation pin-on-disk method for accelerated wear testing of ultrahigh molecular weight polyethylene as a bearing material in total hip arthroplasty.
    Saikko V
    J Biomech; 2015 Jan; 48(2):401-4. PubMed ID: 25498368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.