BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 30778378)

  • 1. Understanding the Cross-Talk of Redox Metabolism and Fe-S Cluster Biogenesis in Leishmania Through Systems Biology Approach.
    Kumar A; Chauhan N; Singh S
    Front Cell Infect Microbiol; 2019; 9():15. PubMed ID: 30778378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug target validation of the trypanothione pathway enzymes through metabolic modelling.
    Olin-Sandoval V; González-Chávez Z; Berzunza-Cruz M; Martínez I; Jasso-Chávez R; Becker I; Espinoza B; Moreno-Sánchez R; Saavedra E
    FEBS J; 2012 May; 279(10):1811-33. PubMed ID: 22394478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism.
    Krauth-Siegel RL; Comini MA
    Biochim Biophys Acta; 2008 Nov; 1780(11):1236-48. PubMed ID: 18395526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyamine metabolism in Leishmania: from arginine to trypanothione.
    Colotti G; Ilari A
    Amino Acids; 2011 Feb; 40(2):269-85. PubMed ID: 20512387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The parasite-specific trypanothione metabolism of trypanosoma and leishmania.
    Krauth-Siegel RL; Meiering SK; Schmidt H
    Biol Chem; 2003 Apr; 384(4):539-49. PubMed ID: 12751784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ellman's-reagent-mediated regeneration of trypanothione in situ: substrate-economical microplate and time-dependent inhibition assays for trypanothione reductase.
    Hamilton CJ; Saravanamuthu A; Eggleston IM; Fairlamb AH
    Biochem J; 2003 Feb; 369(Pt 3):529-37. PubMed ID: 12416994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dataset generated for Dissection of mechanisms of Trypanothione Reductase and Tryparedoxin Peroxidase through dynamic network analysis and simulations in leishmaniasis.
    Kumar A; Saha B; Singh S
    Data Brief; 2017 Dec; 15():757-769. PubMed ID: 29159213
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Perea A; Manzano JI; Kimura Y; Ueda K; Castanys S; Gamarro F
    Biochem J; 2018 Jan; 475(1):87-97. PubMed ID: 29162656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gamma-glutamylcysteine synthetase and tryparedoxin 1 exert high control on the antioxidant system in Trypanosoma cruzi contributing to drug resistance and infectivity.
    González-Chávez Z; Vázquez C; Mejia-Tlachi M; Márquez-Dueñas C; Manning-Cela R; Encalada R; Rodríguez-Enríquez S; Michels PAM; Moreno-Sánchez R; Saavedra E
    Redox Biol; 2019 Sep; 26():101231. PubMed ID: 31203195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trypanothione efficiently intercepts nitric oxide as a harmless iron complex in trypanosomatid parasites.
    Bocedi A; Dawood KF; Fabrini R; Federici G; Gradoni L; Pedersen JZ; Ricci G
    FASEB J; 2010 Apr; 24(4):1035-42. PubMed ID: 19952282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification.
    Irigoín F; Cibils L; Comini MA; Wilkinson SR; Flohé L; Radi R
    Free Radic Biol Med; 2008 Sep; 45(6):733-42. PubMed ID: 18588970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting trypanothione metabolism in trypanosomatid human parasites.
    Olin-Sandoval V; Moreno-Sánchez R; Saavedra E
    Curr Drug Targets; 2010 Dec; 11(12):1614-30. PubMed ID: 20735352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oxygen species regulates expression of iron-sulfur cluster assembly protein IscS of Leishmania donovani.
    Pratap Singh K; Zaidi A; Anwar S; Bimal S; Das P; Ali V
    Free Radic Biol Med; 2014 Oct; 75():195-209. PubMed ID: 25062827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cynaropicrin targets the trypanothione redox system in Trypanosoma brucei.
    Zimmermann S; Oufir M; Leroux A; Krauth-Siegel RL; Becker K; Kaiser M; Brun R; Hamburger M; Adams M
    Bioorg Med Chem; 2013 Nov; 21(22):7202-9. PubMed ID: 24080104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression, purification, and characterization of Leishmania donovani trypanothione reductase in Escherichia coli.
    Mittal MK; Misra S; Owais M; Goyal N
    Protein Expr Purif; 2005 Apr; 40(2):279-86. PubMed ID: 15766869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress-Induced Protein S-Glutathionylation and S-Trypanothionylation in African Trypanosomes-A Quantitative Redox Proteome and Thiol Analysis.
    Ulrich K; Finkenzeller C; Merker S; Rojas F; Matthews K; Ruppert T; Krauth-Siegel RL
    Antioxid Redox Signal; 2017 Sep; 27(9):517-533. PubMed ID: 28338335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of Mitochondrial Energy Metabolism by Glutaredoxin 5 in the Apicomplexan Parasite Neospora caninum.
    Song X; Yang X; Ying Z; Wu K; Liu J; Liu Q
    Microbiol Spectr; 2023 Feb; 11(1):e0309122. PubMed ID: 36541793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depletion of thiol reducing capacity impairs cytosolic but not mitochondrial iron-sulfur protein assembly machineries.
    Braymer JJ; Stümpfig M; Thelen S; Mühlenhoff U; Lill R
    Biochim Biophys Acta Mol Cell Res; 2019 Feb; 1866(2):240-251. PubMed ID: 30419257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trypanothione: a unique bis-glutathionyl derivative in trypanosomatids.
    Manta B; Comini M; Medeiros A; Hugo M; Trujillo M; Radi R
    Biochim Biophys Acta; 2013 May; 1830(5):3199-216. PubMed ID: 23396001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic and biological characterisation of novel
    Medeiros A; Benítez D; Korn RS; Ferreira VC; Barrera E; Carrión F; Pritsch O; Pantano S; Kunick C; de Oliveira CI; Orban OCF; Comini MA
    J Enzyme Inhib Med Chem; 2020 Dec; 35(1):1345-1358. PubMed ID: 32588679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.