These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 30778448)
41. Hybrid synthetic receptor composed of molecularly imprinted polydopamine and aptamers for impedimetric biosensing of urea. Yarahmadi S; Azadbakht A; Derikvand RM Mikrochim Acta; 2019 Jan; 186(2):71. PubMed ID: 30627876 [TBL] [Abstract][Full Text] [Related]
42. A Cathodic "Signal-off" Photoelectrochemical Aptasensor for Ultrasensitive and Selective Detection of Oxytetracycline. Yan K; Liu Y; Yang Y; Zhang J Anal Chem; 2015 Dec; 87(24):12215-20. PubMed ID: 26551579 [TBL] [Abstract][Full Text] [Related]
43. Upconversion luminescence resonance energy transfer-based aptasensor for the sensitive detection of oxytetracycline. Zhang H; Fang C; Wu S; Duan N; Wang Z Anal Biochem; 2015 Nov; 489():44-9. PubMed ID: 26302361 [TBL] [Abstract][Full Text] [Related]
44. Aptasensors for quantitative detection of kanamycin. Robati RY; Arab A; Ramezani M; Langroodi FA; Abnous K; Taghdisi SM Biosens Bioelectron; 2016 Aug; 82():162-72. PubMed ID: 27085947 [TBL] [Abstract][Full Text] [Related]
46. A sensitive electrochemical aptasensor for multiplex antibiotics detection based on high-capacity magnetic hollow porous nanotracers coupling exonuclease-assisted cascade target recycling. Yan Z; Gan N; Li T; Cao Y; Chen Y Biosens Bioelectron; 2016 Apr; 78():51-57. PubMed ID: 26594886 [TBL] [Abstract][Full Text] [Related]
47. Electrochemical aptasensor for multi-antibiotics detection based on endonuclease and exonuclease assisted dual recycling amplification strategy. Huang S; Gan N; Li T; Zhou Y; Cao Y; Dong Y Talanta; 2018 Mar; 179():28-36. PubMed ID: 29310232 [TBL] [Abstract][Full Text] [Related]
48. A fluorescent assay for sensitive detection of kanamycin by split aptamers and DNA-based copper/silver nanoclusters. Liu Y; Guan B; Xu Z; Wu Y; Wang Y; Ning G Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 286():121953. PubMed ID: 36242838 [TBL] [Abstract][Full Text] [Related]
49. Regulating Fluorescent Aptamer-Sensing Behavior of Zeolitic Imidazolate Framework (ZIF-8) Platform via Lanthanide Ion Doping. Hao YB; Shao ZS; Cheng C; Xie XY; Zhang J; Song WJ; Wang HS ACS Appl Mater Interfaces; 2019 Sep; 11(35):31755-31762. PubMed ID: 31393692 [TBL] [Abstract][Full Text] [Related]
50. Colorimetric detection of kanamycin based on analyte-protected silver nanoparticles and aptamer-selective sensing mechanism. Xu Y; Han T; Li X; Sun L; Zhang Y; Zhang Y Anal Chim Acta; 2015 Sep; 891():298-303. PubMed ID: 26388390 [TBL] [Abstract][Full Text] [Related]
51. Spherical nucleic acids with tailored DNA conformation via bromide backfilling for the detection of kanamycin. Bai L; Ye T; Zhu D; Sun D; Zhang S; Lu Y; Yuan M; Cao H; Hao L; Wu X; Yin F; Xu F Luminescence; 2022 Nov; 37(11):1964-1971. PubMed ID: 36063361 [TBL] [Abstract][Full Text] [Related]
52. A fluorescent biosensing platform based on the polydopamine nanospheres intergrating with Exonuclease III-assisted target recycling amplification. Qiang W; Wang X; Li W; Chen X; Li H; Xu D Biosens Bioelectron; 2015 Sep; 71():143-149. PubMed ID: 25897884 [TBL] [Abstract][Full Text] [Related]
53. Label-free detection of kanamycin using aptamer-based cantilever array sensor. Bai X; Hou H; Zhang B; Tang J Biosens Bioelectron; 2014 Jun; 56():112-6. PubMed ID: 24480130 [TBL] [Abstract][Full Text] [Related]
54. Immobilization of ssDNA on a metal-organic framework derived magnetic porous carbon (MPC) composite as a fluorescent sensing platform for the detection of arsenate ions. Muppidathi M; Perumal P; Ayyanu R; Subramanian S Analyst; 2019 May; 144(9):3111-3118. PubMed ID: 30924836 [TBL] [Abstract][Full Text] [Related]
55. A fluorescence aptasensor based on two-dimensional sheet metal-organic frameworks for monitoring adenosine triphosphate. Hai XM; Li N; Wang K; Zhang ZQ; Zhang J; Dang FQ Anal Chim Acta; 2018 Jan; 998():60-66. PubMed ID: 29153087 [TBL] [Abstract][Full Text] [Related]
56. Dual-ligand lanthanide metal-organic framework based ratiometric fluorescent platform for visual monitoring of aminoglycoside residues in food samples. Deng T; He H; Chen H; Peng X; Li H; Yan X; Lei Y; Luo L Talanta; 2024 Aug; 276():126200. PubMed ID: 38735243 [TBL] [Abstract][Full Text] [Related]
57. Metal-Mediated Polydopamine Nanoparticles-DNA Nanomachine Coupling Electrochemical Conversion of Metal-Organic Frameworks for Ultrasensitive MicroRNA Sensing. Bao T; Fu R; Jiang Y; Wen W; Zhang X; Wang S Anal Chem; 2021 Oct; 93(40):13475-13484. PubMed ID: 34586792 [TBL] [Abstract][Full Text] [Related]
58. Microfluidic electrophoretic non-enzymatic kanamycin assay making use of a stirring bar functionalized with gold-labeled aptamer, of a fluorescent DNA probe, and of signal amplification via hybridization chain reaction. Zhang K; Gan N; Hu F; Chen X; Li T; Cao J Mikrochim Acta; 2018 Feb; 185(3):181. PubMed ID: 29594631 [TBL] [Abstract][Full Text] [Related]
59. Target-initiated autonomous synthesis of metal-ion dependent DNAzymes for label-free and amplified fluorescence detection of kanamycin in milk samples. Zhou W; Xu L; Jiang B Anal Chim Acta; 2021 Mar; 1148():238195. PubMed ID: 33516378 [TBL] [Abstract][Full Text] [Related]
60. Study of binding mechanism of aptamer to kanamycin and the development of fluorescent aptasensor in milk detection. Han J; Ma P; Khan IM; Zhang Y; Wang Z Talanta; 2023 Aug; 260():124530. PubMed ID: 37116356 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]