These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30778467)

  • 1. High-throughput mechanotransduction in Drosophila embryos with mesofluidics.
    Shorr AZ; Sönmez UM; Minden JS; LeDuc PR
    Lab Chip; 2019 Mar; 19(7):1141-1152. PubMed ID: 30778467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanostimulation of Multicellular Organisms Through a High-Throughput Microfluidic Compression System.
    Sönmez UM; Frey N; Minden JS; LeDuc PR
    J Vis Exp; 2022 Dec; (190):. PubMed ID: 36622011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical Compression of Drosophila Embryos Using Rapid Fabrication Microfluidic Devices.
    Levis M; Sacco F; Velagala V; Ontiveros F; Zartman JJ
    Methods Mol Biol; 2024; 2805():153-160. PubMed ID: 39008180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic self-assembly of live Drosophila embryos for versatile high-throughput analysis of embryonic morphogenesis.
    Dagani GT; Monzo K; Fakhoury JR; Chen CC; Sisson JC; Zhang X
    Biomed Microdevices; 2007 Oct; 9(5):681-94. PubMed ID: 17508286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of localized hypoxia on Drosophila embryo development.
    Wang Z; Oppegard SC; Eddington DT; Cheng J
    PLoS One; 2017; 12(9):e0185267. PubMed ID: 28934338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated microfluidic device for multiplexed imaging of spatial gene expression patterns of
    Zhu H; Shen W; Luo C; Liu F
    Lab Chip; 2022 Oct; 22(21):4081-4092. PubMed ID: 36165088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phagocytosis Assay for Apoptotic Cells in Drosophila Embryos.
    Nonaka S; Hori A; Nakanishi Y; Kuraishi T
    J Vis Exp; 2017 Aug; (126):. PubMed ID: 28809832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic-enabled mechanical microcompressor for the immobilization of live single- and multi-cellular specimens.
    Yan Y; Jiang L; Aufderheide KJ; Wright GA; Terekhov A; Costa L; Qin K; McCleery WT; Fellenstein JJ; Ustione A; Robertson JB; Johnson CH; Piston DW; Hutson MS; Wikswo JP; Hofmeister W; Janetopoulos C
    Microsc Microanal; 2014 Feb; 20(1):141-51. PubMed ID: 24444078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated platform for large-scale data collection and precise perturbation of live Drosophila embryos.
    Levario TJ; Zhao C; Rouse T; Shvartsman SY; Lu H
    Sci Rep; 2016 Feb; 6():21366. PubMed ID: 26864815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward embedded laboratory automation for smart Lab-on-a-Chip embryo arrays.
    Wang KI; Salcic Z; Yeh J; Akagi J; Zhu F; Hall CJ; Crosier KE; Crosier PS; Wlodkowic D
    Biosens Bioelectron; 2013 Oct; 48():188-96. PubMed ID: 23685315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic system with integrated microinjector for automated Drosophila embryo injection.
    Delubac D; Highley CB; Witzberger-Krajcovic M; Ayoob JC; Furbee EC; Minden JS; Zappe S
    Lab Chip; 2012 Nov; 12(22):4911-9. PubMed ID: 23042419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative mechanical evaluation and analysis of Drosophila embryos through the stages of embryogenesis.
    Shen Y; Zhang R; Cozen S; Xi N; Wejinya UC; Hao L
    Birth Defects Res C Embryo Today; 2008 Sep; 84(3):204-14. PubMed ID: 18773458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. OpenSource lab-on-a-chip physiometer for accelerated zebrafish embryo biotests.
    Akagi J; Hall CJ; Crosier KE; Cooper JM; Crosier PS; Wlodkowic D
    Curr Protoc Cytom; 2014 Jan; 67():9.44.1-9.44.16. PubMed ID: 24510773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstructing ERK Signaling in the Drosophila Embryo from Fixed Images.
    Lim B; Dsilva CJ; Kevrekidis IG; Shvartsman SY
    Methods Mol Biol; 2017; 1487():337-351. PubMed ID: 27924579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput microfluidic micropipette aspiration device to probe time-scale dependent nuclear mechanics in intact cells.
    Davidson PM; Fedorchak GR; Mondésert-Deveraux S; Bell ES; Isermann P; Aubry D; Allena R; Lammerding J
    Lab Chip; 2019 Nov; 19(21):3652-3663. PubMed ID: 31559980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Appendix C: Automated Vitrification of Mammalian Embryos on a Digital Microfluidic Device.
    Liu J; Pyne DG; Abdelgawad M; Sun Y
    Methods Mol Biol; 2017; 1568():309-316. PubMed ID: 28421507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microfluidic microinjector for toxicological and developmental studies in Drosophila embryos.
    Ghaemi R; Arefi P; Stosic A; Acker M; Raza Q; Roger Jacobs J; Selvaganapathy PR
    Lab Chip; 2017 Nov; 17(22):3898-3908. PubMed ID: 29058002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated sorting of live transgenic embryos.
    Furlong EE; Profitt D; Scott MP
    Nat Biotechnol; 2001 Feb; 19(2):153-6. PubMed ID: 11175730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of size-dependent mechanical properties of tip-growing cells using a lab-on-chip device.
    Hu C; Munglani G; Vogler H; Ndinyanka Fabrice T; Shamsudhin N; Wittel FK; Ringli C; Grossniklaus U; Herrmann HJ; Nelson BJ
    Lab Chip; 2016 Dec; 17(1):82-90. PubMed ID: 27883138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of digital microfluidics as portable platforms for lab-on a-chip applications.
    Samiei E; Tabrizian M; Hoorfar M
    Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.