These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30778467)

  • 21. Microfluidic Devices for Automation of Assays on Drosophila Melanogaster for Applications in Drug Discovery and Biological Studies.
    Ghaemi R; Selvaganapathy PR
    Curr Pharm Biotechnol; 2016; 17(9):822-36. PubMed ID: 27194358
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidic-aided genotyping of zebrafish in the first 48 h with 100% viability.
    Samuel R; Stephenson R; Roy P; Pryor R; Zhou L; Bonkowsky JL; Gale BK
    Biomed Microdevices; 2015 Apr; 17(2):43. PubMed ID: 25773537
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic trap array for massively parallel imaging of Drosophila embryos.
    Levario TJ; Zhan M; Lim B; Shvartsman SY; Lu H
    Nat Protoc; 2013 Apr; 8(4):721-36. PubMed ID: 23493069
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium.
    Farge E
    Curr Biol; 2003 Aug; 13(16):1365-77. PubMed ID: 12932320
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fly-on-a-Chip: Microfluidics for Drosophila melanogaster Studies.
    Zabihihesari A; Hilliker AJ; Rezai P
    Integr Biol (Camb); 2019 Dec; 11(12):425-443. PubMed ID: 31965192
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-dimensional segmentation of nuclei and mitotic chromosomes for the study of cell divisions in live Drosophila embryos.
    Chinta R; Wasser M
    Cytometry A; 2012 Jan; 81(1):52-64. PubMed ID: 22069299
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biocompatible Cantilevers for Mechanical Characterization of Zebrafish Embryos using Image Analysis.
    Tomizawa Y; Dixit K; Daggett D; Hoshino K
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30925721
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automated Lab-on-a-Chip Technology for Fish Embryo Toxicity Tests Performed under Continuous Microperfusion (μFET).
    Zhu F; Wigh A; Friedrich T; Devaux A; Bony S; Nugegoda D; Kaslin J; Wlodkowic D
    Environ Sci Technol; 2015 Dec; 49(24):14570-8. PubMed ID: 26506399
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interfacing Lab-on-a-Chip Embryo Technology with High-Definition Imaging Cytometry.
    Zhu F; Hall CJ; Crosier PS; Wlodkowic D
    Zebrafish; 2015 Aug; 12(4):315-8. PubMed ID: 26132783
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorescence imaging techniques for studying Drosophila embryo development.
    Mavrakis M; Rikhy R; Lilly M; Lippincott-Schwartz J
    Curr Protoc Cell Biol; 2008 Jun; Chapter 4():Unit 4.18. PubMed ID: 18551421
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanotransduction in development.
    Farge E
    Curr Top Dev Biol; 2011; 95():243-65. PubMed ID: 21501754
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Geometry can provide long-range mechanical guidance for embryogenesis.
    Dicko M; Saramito P; Blanchard GB; Lye CM; Sanson B; Étienne J
    PLoS Comput Biol; 2017 Mar; 13(3):e1005443. PubMed ID: 28346461
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Parallel imaging of
    Goyal Y; Levario TJ; Mattingly HH; Holmes S; Shvartsman SY; Lu H
    Dis Model Mech; 2017 Jul; 10(7):923-929. PubMed ID: 28495673
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contour extraction of Drosophila embryos.
    Li Q; Kambhamettu C
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(6):1509-21. PubMed ID: 21339537
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A microfluidics-based method for measuring neuronal activity in Drosophila chemosensory neurons.
    van Giesen L; Neagu-Maier GL; Kwon JY; Sprecher SG
    Nat Protoc; 2016 Dec; 11(12):2389-2400. PubMed ID: 27809317
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo live-analysis of cell cycle checkpoints in Drosophila early embryos.
    Takada S; Cha BJ
    Methods Mol Biol; 2011; 782():75-92. PubMed ID: 21870286
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flow-induced stress on adherent cells in microfluidic devices.
    Shemesh J; Jalilian I; Shi A; Heng Yeoh G; Knothe Tate ML; Ebrahimi Warkiani M
    Lab Chip; 2015 Nov; 15(21):4114-27. PubMed ID: 26334370
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Control and automation of multilayered integrated microfluidic device fabrication.
    Kipper S; Frolov L; Guy O; Pellach M; Glick Y; Malichi A; Knisbacher BA; Barbiro-Michaely E; Avrahami D; Yavets-Chen Y; Levanon EY; Gerber D
    Lab Chip; 2017 Jan; 17(3):557-566. PubMed ID: 28102868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Force measurement and mechanical characterization of living Drosophila embryos for human medical study.
    Shen Y; Wejinya UC; Xi N; Pomeroy CA
    Proc Inst Mech Eng H; 2007 Feb; 221(2):99-112. PubMed ID: 17385565
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro development of donated frozen-thawed human embryos in a prototype static microfluidic device: a randomized controlled trial.
    Kieslinger DC; Hao Z; Vergouw CG; Kostelijk EH; Lambalk CB; Le Gac S
    Fertil Steril; 2015 Mar; 103(3):680-6.e2. PubMed ID: 25572874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.