These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 3077863)
1. Plants and high temperature stress. Weis E; Berry JA Symp Soc Exp Biol; 1988; 42():329-46. PubMed ID: 3077863 [TBL] [Abstract][Full Text] [Related]
2. High temperature acclimation of C4 photosynthesis is linked to changes in photosynthetic biochemistry. Dwyer SA; Ghannoum O; Nicotra A; von Caemmerer S Plant Cell Environ; 2007 Jan; 30(1):53-66. PubMed ID: 17177876 [TBL] [Abstract][Full Text] [Related]
3. Effects of freezing on plant mesophyll cells. Krause GH; Grafflage S; Rumich-Bayer S; Somersalo S Symp Soc Exp Biol; 1988; 42():311-27. PubMed ID: 3077862 [TBL] [Abstract][Full Text] [Related]
4. The temperature response of C(3) and C(4) photosynthesis. Sage RF; Kubien DS Plant Cell Environ; 2007 Sep; 30(9):1086-106. PubMed ID: 17661749 [TBL] [Abstract][Full Text] [Related]
5. Photosynthesis and temperature, with particular reference to effects on quantum yield. Baker NR; Long SP; Ort DR Symp Soc Exp Biol; 1988; 42():347-75. PubMed ID: 3077864 [TBL] [Abstract][Full Text] [Related]
6. The mitochondrial CMSII mutation of Nicotiana sylvestris impairs adjustment of photosynthetic carbon assimilation to higher growth irradiance. Priault P; Fresneau C; Noctor G; De Paepe R; Cornic G; Streb P J Exp Bot; 2006; 57(9):2075-85. PubMed ID: 16714313 [TBL] [Abstract][Full Text] [Related]
7. The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis. Zhu XG; Ort DR; Whitmarsh J; Long SP J Exp Bot; 2004 May; 55(400):1167-75. PubMed ID: 15133059 [TBL] [Abstract][Full Text] [Related]
8. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. Wang H; Gu M; Cui J; Shi K; Zhou Y; Yu J J Photochem Photobiol B; 2009 Jul; 96(1):30-7. PubMed ID: 19410482 [TBL] [Abstract][Full Text] [Related]
9. Acceleration of plastoquinone pool reduction by alternative pathways precedes a decrease in photosynthetic CO2 assimilation in preheated barley leaves. Kana R; Kotabová E; Prásil O Physiol Plant; 2008 Aug; 133(4):794-806. PubMed ID: 18494737 [TBL] [Abstract][Full Text] [Related]
10. Photosynthetic acclimation to rising atmospheric carbon dioxide concentration. Ghildiyal MC; Sharma-Natu P Indian J Exp Biol; 2000 Oct; 38(10):961-6. PubMed ID: 11324166 [TBL] [Abstract][Full Text] [Related]
11. Manipulation of light and CO2 environments of the primary leaves of bean (Phaseolus vulgaris L.) affects photosynthesis in both the primary and the first trifoliate leaves: involvement of systemic regulation. Araya T; Noguchi K; Terashima I Plant Cell Environ; 2008 Jan; 31(1):50-61. PubMed ID: 17944816 [TBL] [Abstract][Full Text] [Related]
12. Acclimation of tobacco leaves to high light intensity drives the plastoquinone oxidation system--relationship among the fraction of open PSII centers, non-photochemical quenching of Chl fluorescence and the maximum quantum yield of PSII in the dark. Miyake C; Amako K; Shiraishi N; Sugimoto T Plant Cell Physiol; 2009 Apr; 50(4):730-43. PubMed ID: 19251745 [TBL] [Abstract][Full Text] [Related]
13. Regulation of the excitation energy utilization in the photosynthetic apparatus of chlorina f2 barley mutant grown under different irradiances. Stroch M; Cajánek M; Kalina J; Spunda V J Photochem Photobiol B; 2004 Jul; 75(1-2):41-50. PubMed ID: 15246349 [TBL] [Abstract][Full Text] [Related]
14. Photosynthetic acclimation: state transitions and adjustment of photosystem stoichiometry--functional relationships between short-term and long-term light quality acclimation in plants. Dietzel L; Bräutigam K; Pfannschmidt T FEBS J; 2008 Mar; 275(6):1080-8. PubMed ID: 18318835 [TBL] [Abstract][Full Text] [Related]
15. Circumvention of over-excitation of PSII by maintaining electron transport rate in leaves of four cotton genotypes developed under long-term drought. Kitao M; Lei TT Plant Biol (Stuttg); 2007 Jan; 9(1):69-76. PubMed ID: 16883485 [TBL] [Abstract][Full Text] [Related]
16. Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1,5-bisphosphate regeneration limitation. Chen GY; Yong ZH; Liao Y; Zhang DY; Chen Y; Zhang HB; Chen J; Zhu JG; Xu DQ Plant Cell Physiol; 2005 Jul; 46(7):1036-45. PubMed ID: 15840641 [TBL] [Abstract][Full Text] [Related]
17. Compensation for PSII photoinactivation by regulated non-photochemical dissipation influences the impact of photoinactivation on electron transport and CO2 assimilation. Kornyeyev D; Logan BA; Tissue DT; Allen RD; Holaday AS Plant Cell Physiol; 2006 Apr; 47(4):437-46. PubMed ID: 16449233 [TBL] [Abstract][Full Text] [Related]
18. Temperature response of photosynthesis in transgenic rice transformed with 'sense' or 'antisense' rbcS. Makino A; Sage RF Plant Cell Physiol; 2007 Oct; 48(10):1472-83. PubMed ID: 17804480 [TBL] [Abstract][Full Text] [Related]
19. Transgenic, non-isoprene emitting poplars don't like it hot. Behnke K; Ehlting B; Teuber M; Bauerfeind M; Louis S; Hänsch R; Polle A; Bohlmann J; Schnitzler JP Plant J; 2007 Aug; 51(3):485-99. PubMed ID: 17587235 [TBL] [Abstract][Full Text] [Related]
20. The differential effects of herbivory by first and fourth instars of Trichoplusia ni (Lepidoptera: Noctuidae) on photosynthesis in Arabidopsis thaliana. Tang JY; Zielinski RE; Zangerl AR; Crofts AR; Berenbaum MR; Delucia EH J Exp Bot; 2006; 57(3):527-36. PubMed ID: 16377737 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]