These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30778890)

  • 1. Biomethane production from sugar beet pulp under cocultivation with Clostridium cellulovorans and methanogens.
    Tomita H; Okazaki F; Tamaru Y
    AMB Express; 2019 Feb; 9(1):28. PubMed ID: 30778890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological and molecular characterizations of the interactions in two cellulose-to-methane cocultures.
    Lu H; Ng SK; Jia Y; Cai M; Lee PKH
    Biotechnol Biofuels; 2017; 10():37. PubMed ID: 28191038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct IBE fermentation from mandarin orange wastes by combination of Clostridium cellulovorans and Clostridium beijerinckii.
    Tomita H; Okazaki F; Tamaru Y
    AMB Express; 2019 Jan; 9(1):1. PubMed ID: 30607514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic Responses of the Interactions between Clostridium cellulovorans 743B and Rhodopseudomonas palustris CGA009 in a Cellulose-Grown Coculture for Enhanced Hydrogen Production.
    Lu H; Chen J; Jia Y; Cai M; Lee PKH
    Appl Environ Microbiol; 2016 Aug; 82(15):4546-4559. PubMed ID: 27208134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth Kinetics, Carbon Isotope Fractionation, and Gene Expression in the Hyperthermophile
    Topçuoğlu BD; Meydan C; Nguyen TB; Lang SQ; Holden JF
    Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lime pretreatment of sugar beet pulp and evaluation of synergy between ArfA, ManA and XynA from Clostridium cellulovorans on the pretreated substrate.
    Dredge R; Radloff SE; van Dyk JS; Pletschke BI
    3 Biotech; 2011 Oct; 1(3):151-159. PubMed ID: 22611526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens.
    Zabranska J; Pokorna D
    Biotechnol Adv; 2018; 36(3):707-720. PubMed ID: 29248685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved
    Wen Z; Ledesma-Amaro R; Lin J; Jiang Y; Yang S
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30658972
    [No Abstract]   [Full Text] [Related]  

  • 9. Methanogenic archaea and CO2-dependent methanogenesis on washed rice roots.
    Lehmann-Richter S; Grosskopf R; Liesack W; Frenzel P; Conrad R
    Environ Microbiol; 1999 Apr; 1(2):159-66. PubMed ID: 11207731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. n-Butanol and ethanol production from cellulose by Clostridium cellulovorans overexpressing heterologous aldehyde/alcohol dehydrogenases.
    Bao T; Zhao J; Li J; Liu X; Yang ST
    Bioresour Technol; 2019 Aug; 285():121316. PubMed ID: 30959389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic Characterization of Unused Biomass Degradation Using the
    Eljonaid MY; Tomita H; Okazaki F; Tamaru Y
    Microorganisms; 2022 Dec; 10(12):. PubMed ID: 36557767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal proteome dynamics of Clostridium cellulovorans cultured with major plant cell wall polysaccharides.
    Aburaya S; Aoki W; Kuroda K; Minakuchi H; Ueda M
    BMC Microbiol; 2019 Jun; 19(1):118. PubMed ID: 31159733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of hydrothermal pretreatment of sugar beet pulp for methane production.
    Ziemiński K; Romanowska I; Kowalska-Wentel M; Cyran M
    Bioresour Technol; 2014 Aug; 166():187-93. PubMed ID: 24907578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dark fermentative hydrogen production from hydrolyzed sugar beet pulp improved by iron addition.
    Cieciura-Włoch W; Borowski S; Domański J
    Bioresour Technol; 2020 Oct; 314():123713. PubMed ID: 32629374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic resources for methane production from biomass described with the Gene Ontology.
    Purwantini E; Torto-Alalibo T; Lomax J; Setubal JC; Tyler BM; Mukhopadhyay B
    Front Microbiol; 2014; 5():634. PubMed ID: 25520705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of minicellulosomes from Clostridium cellulovorans for the fermentation of cellulosic ethanol using engineered recombinant Saccharomyces cerevisiae.
    Hyeon JE; Yu KO; Suh DJ; Suh YW; Lee SE; Lee J; Han SO
    FEMS Microbiol Lett; 2010 Sep; 310(1):39-47. PubMed ID: 20637040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional patterns and temperature response of cellulose-fermenting microbial cultures containing different methanogenic communities.
    Wu XL; Chin KJ; Stubner S; Conrad R
    Appl Microbiol Biotechnol; 2001 Jul; 56(1-2):212-9. PubMed ID: 11499933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the Microbial Community in an Acidic Hollow-Fiber Membrane Biofilm Reactor (Hf-MBfR) Used for the Biological Conversion of Carbon Dioxide to Methane.
    Shin HC; Ju DH; Jeon BS; Choi O; Kim HW; Um Y; Lee DH; Sang BI
    PLoS One; 2015; 10(12):e0144999. PubMed ID: 26694756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial Degradation of Cellulosic Material and Gas Generation: Implications for the Management of Low- and Intermediate-Level Radioactive Waste.
    Beaton D; Pelletier P; Goulet RR
    Front Microbiol; 2019; 10():204. PubMed ID: 30814985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.