These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 30779305)

  • 1. Measuring local properties inside a cell-mimicking structure using rotating optical tweezers.
    Zhang S; Gibson LJ; Stilgoe AB; Nieminen TA; Rubinsztein-Dunlop H
    J Biophotonics; 2019 Jul; 12(7):e201900022. PubMed ID: 30779305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring Local Viscosities near Plasma Membranes of Living Cells with Photonic Force Microscopy.
    Jünger F; Kohler F; Meinel A; Meyer T; Nitschke R; Erhard B; Rohrbach A
    Biophys J; 2015 Sep; 109(5):869-82. PubMed ID: 26331245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the micro-rheological properties of aerosol particles using optical tweezers.
    Power RM; Reid JP
    Rep Prog Phys; 2014 Jul; 77(7):074601. PubMed ID: 24994710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entry of microparticles into giant lipid vesicles by optical tweezers.
    Fessler F; Sharma V; Muller P; Stocco A
    Phys Rev E; 2023 May; 107(5):L052601. PubMed ID: 37328973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rotation dynamics of particles trapped in a rotating beam.
    Yu H; She W
    J Opt Soc Am A Opt Image Sci Vis; 2015 Jan; 32(1):90-100. PubMed ID: 26366493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurements of liposome biomechanical properties by combining line optical tweezers and dielectrophoresis.
    Spyratou E; Cunaj E; Tsigaridas G; Mourelatou EA; Demetzos C; Serafetinides AA; Makropoulou M
    J Liposome Res; 2015 Sep; 25(3):202-210. PubMed ID: 25487171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Round-tip dielectrophoresis-based tweezers for single micro-object manipulation.
    Kodama T; Osaki T; Kawano R; Kamiya K; Miki N; Takeuchi S
    Biosens Bioelectron; 2013 Sep; 47():206-12. PubMed ID: 23570681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-molecule manipulation of macromolecules on GUV or SUV membranes using optical tweezers.
    Wang Y; Kumar A; Jin H; Zhang Y
    Biophys J; 2021 Dec; 120(24):5454-5465. PubMed ID: 34813728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An opto-thermal approach for rotating a trapped core-shell magnetic microparticle with patchy shell.
    Bai W; Shao M; Zhou J; Zhao Q; Ji F; Zhong MC
    Rev Sci Instrum; 2022 Aug; 93(8):084902. PubMed ID: 36050094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rotation of large asymmetrical absorbing objects by Laguerre-Gauss beams.
    Herne CM; Capuzzi KM; Sobel E; Kropas RT
    Opt Lett; 2015 Sep; 40(17):4026-9. PubMed ID: 26368703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of sub-degree angular fluctuations of the local cell membrane slope using optical tweezers.
    Vaippully R; Ramanujan V; Gopalakrishnan M; Bajpai S; Roy B
    Soft Matter; 2020 Aug; 16(32):7606-7612. PubMed ID: 32724976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical force sensor array in a microfluidic device based on holographic optical tweezers.
    Uhrig K; Kurre R; Schmitz C; Curtis JE; Haraszti T; Clemen AE; Spatz JP
    Lab Chip; 2009 Mar; 9(5):661-8. PubMed ID: 19224015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast spinning of gold nanoparticles in water using circularly polarized light.
    Lehmuskero A; Ogier R; Gschneidtner T; Johansson P; Käll M
    Nano Lett; 2013 Jul; 13(7):3129-34. PubMed ID: 23777484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opto-Thermophoretic Attraction, Trapping, and Dynamic Manipulation of Lipid Vesicles.
    Hill EH; Li J; Lin L; Liu Y; Zheng Y
    Langmuir; 2018 Nov; 34(44):13252-13262. PubMed ID: 30350700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optically-actuated translational and rotational motion at the microscale for microfluidic manipulation and characterization.
    Mohanty S
    Lab Chip; 2012 Oct; 12(19):3624-36. PubMed ID: 22899251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions.
    Conkey DB; Trivedi RP; Pavani SR; Smalyukh II; Piestun R
    Opt Express; 2011 Feb; 19(5):3835-42. PubMed ID: 21369208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active probing of the mechanical properties of biological and synthetic vesicles.
    Piontek MC; Lira RB; Roos WH
    Biochim Biophys Acta Gen Subj; 2021 Apr; 1865(4):129486. PubMed ID: 31734458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarization gradient: exploring an original route for optical trapping and manipulation.
    Cipparrone G; Ricardez-Vargas I; Pagliusi P; Provenzano C
    Opt Express; 2010 Mar; 18(6):6008-13. PubMed ID: 20389620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of complex surfaces on biomicrorheological measurements using optical tweezers.
    Zhang S; Gibson LJ; Stilgoe AB; Nieminen TA; Rubinsztein-Dunlop H
    Lab Chip; 2018 Jan; 18(2):315-322. PubMed ID: 29227492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Custom-Made Microspheres for Optical Tweezers.
    Jannasch A; Abdosamadi MK; Ramaiya A; De S; Ferro V; Sonnberger A; Schäffer E
    Methods Mol Biol; 2017; 1486():137-155. PubMed ID: 27844428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.