BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30779444)

  • 1. Reversing the typical pH stability profile of the Trp-cage.
    Graham KA; Byrne A; Son R; Andersen NH
    Biopolymers; 2019 Mar; 110(3):e23260. PubMed ID: 30779444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing a 20-residue protein.
    Neidigh JW; Fesinmeyer RM; Andersen NH
    Nat Struct Biol; 2002 Jun; 9(6):425-30. PubMed ID: 11979279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protonation/deprotonation effects on the stability of the Trp-cage miniprotein.
    Jimenez-Cruz CA; Makhatadze GI; Garcia AE
    Phys Chem Chem Phys; 2011 Oct; 13(38):17056-63. PubMed ID: 21773639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Folding dynamics of the Trp-cage miniprotein: evidence for a native-like intermediate from combined time-resolved vibrational spectroscopy and molecular dynamics simulations.
    Meuzelaar H; Marino KA; Huerta-Viga A; Panman MR; Smeenk LE; Kettelarij AJ; van Maarseveen JH; Timmerman P; Bolhuis PG; Woutersen S
    J Phys Chem B; 2013 Oct; 117(39):11490-501. PubMed ID: 24050152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperativity network of Trp-cage miniproteins: probing salt-bridges.
    Rovó P; Farkas V; Hegyi O; Szolomájer-Csikós O; Tóth GK; Perczel A
    J Pept Sci; 2011 Sep; 17(9):610-9. PubMed ID: 21644245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation as conformational switch from the native to amyloid state: Trp-cage as a protein aggregation model.
    Kardos J; Kiss B; Micsonai A; Rovó P; Menyhárd DK; Kovács J; Váradi G; Tóth GK; Perczel A
    J Phys Chem B; 2015 Feb; 119(7):2946-55. PubMed ID: 25625571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal salt bridge for Trp-cage stabilization.
    Williams DV; Byrne A; Stewart J; Andersen NH
    Biochemistry; 2011 Feb; 50(7):1143-52. PubMed ID: 21222485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retro operation on the Trp-cage miniprotein sequence produces an unstructured molecule capable of folding similar to the original only upon 2,2,2-trifluoroethanol addition.
    Vymětal J; Bathula SR; Cerný J; Chaloupková R; Zídek L; Sklenář V; Vondrášek J
    Protein Eng Des Sel; 2014 Dec; 27(12):463-72. PubMed ID: 25344682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereoelectronic tuning of the structure and stability of the trp cage miniprotein.
    Naduthambi D; Zondlo NJ
    J Am Chem Soc; 2006 Sep; 128(38):12430-1. PubMed ID: 16984189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding dynamics and pathways of the trp-cage miniproteins.
    Byrne A; Williams DV; Barua B; Hagen SJ; Kier BL; Andersen NH
    Biochemistry; 2014 Sep; 53(38):6011-21. PubMed ID: 25184759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperation between a salt bridge and the hydrophobic core triggers fold stabilization in a Trp-cage miniprotein.
    Hudáky P; Stráner P; Farkas V; Váradi G; Tóth G; Perczel A
    Biochemistry; 2008 Jan; 47(3):1007-16. PubMed ID: 18161949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Trp-cage: optimizing the stability of a globular miniprotein.
    Barua B; Lin JC; Williams VD; Kummler P; Neidigh JW; Andersen NH
    Protein Eng Des Sel; 2008 Mar; 21(3):171-85. PubMed ID: 18203802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trp-Cage Folding on Organic Surfaces.
    Levine ZA; Fischer SA; Shea JE; Pfaendtner J
    J Phys Chem B; 2015 Aug; 119(33):10417-25. PubMed ID: 26207727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing the fold stability of the circularly permuted Trp-cage motif.
    Graham KA; Byrne A; Mason M; Andersen NH
    Biopolymers; 2019 Dec; 110(12):e23327. PubMed ID: 31479150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Computational Study of the Ionic Liquid-Induced Destabilization of the Miniprotein Trp-Cage.
    Uralcan B; Kim SB; Markwalter CE; Prud'homme RK; Debenedetti PG
    J Phys Chem B; 2018 May; 122(21):5707-5715. PubMed ID: 29617131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equilibrium simulation of trp-cage in the presence of protein crowders.
    Bille A; Linse B; Mohanty S; Irbäck A
    J Chem Phys; 2015 Nov; 143(17):175102. PubMed ID: 26547182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational investigation of cold denaturation in the Trp-cage miniprotein.
    Kim SB; Palmer JC; Debenedetti PG
    Proc Natl Acad Sci U S A; 2016 Aug; 113(32):8991-6. PubMed ID: 27457961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unfolding thermodynamics of Trp-cage, a 20 residue miniprotein, studied by differential scanning calorimetry and circular dichroism spectroscopy.
    Streicher WW; Makhatadze GI
    Biochemistry; 2007 Mar; 46(10):2876-80. PubMed ID: 17295518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of tryptophan side chain dynamics on the Trp-cage mini-protein folding studied by molecular dynamics simulations.
    Kannan S; Zacharias M
    PLoS One; 2014; 9(2):e88383. PubMed ID: 24563686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The equilibrium properties and folding kinetics of an all-atom Go model of the Trp-cage.
    Linhananta A; Boer J; MacKay I
    J Chem Phys; 2005 Mar; 122(11):114901. PubMed ID: 15836251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.